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Abstract—Technological evolution of mobile user equipments
(UEs), such as smartphones or laptops, goes hand-in-hand with
evolution of new mobile applications. However, running compu-
tationally demanding applications at the UEs is constrained by
limited battery capacity and energy consumption of the UEs.
Suitable solution extending the battery life-time of the UEs
is to offload the applications demanding huge processing to a
conventional centralized cloud (CC). Nevertheless, this option
introduces significant execution delay consisting in delivery of
the offloaded applications to the cloud and back plus time of
the computation at the cloud. Such delay is inconvenient and
make the offloading unsuitable for real-time applications. To
cope with the delay problem, a new emerging concept, known as
mobile edge computing (MEC), has been introduced. The MEC
brings computation and storage resources to the edge of mobile
network enabling to run the highly demanding applications
at the UE while meeting strict delay requirements. The MEC
computing resources can be exploited also by operators and third
parties for specific purposes. In this paper, we first describe
major use cases and reference scenarios where the MEC is
applicable. After that we survey existing concepts integrating
MEC functionalities to the mobile networks and discuss current
advancement in standardization of the MEC. The core of this
survey is, then, focused on user-oriented use case in the MEC,
i.e., computation offloading. In this regard, we divide the research
on computation offloading to three key areas: i) decision on
computation offloading, ii) allocation of computing resource
within the MEC, and iii) mobility management. Finally, we
highlight lessons learned in area of the MEC and we discuss
open research challenges yet to be addressed in order to fully
enjoy potentials offered by the MEC.

I. INTRODUCTION

The users’ requirements on data rates and quality of service
(QoS) are exponentially increasing. Moreover, technologi-
cal evolution of smartphones, laptops and tablets enables
to emerge new high demanding services and applications.
Although new mobile devices are more and more powerful
in terms of central processing unit (CPU), even these may not
be able to handle the applications requiring huge processing
in a short time. Moreover, high battery consumption still
poses a significant obstacle restricting the users to fully enjoy
highly demanding applications on their own devices. This
motivates development of mobile cloud computing (MCC)
concept allowing cloud computing for mobile users [1]. In
the MCC, a user equipment (UE) may exploit computing
and storage resources of powerful distant centralized clouds
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(CC), which are accessible through a core network (CN) of
a mobile operator and the Internet. The MCC brings several
advantages [2]; 1) extending battery lifetime by offloading
energy consuming computations of the applications to the
cloud, 2) enabling sophisticated applications to the mobile
users, and 3) providing higher data storage capabilities to the
users. Nevertheless, the MCC also imposes huge additional
load both on radio and backhaul of mobile networks and
introduces high latency since data is sent to powerful farm
of servers that are, in terms of network topology, far away
from the users.

To address the problem of a long latency, the cloud services
should be moved to a proximity of the UEs, i.e., to the
edge of mobile network as considered in newly emerged
edge computing paradigm. The edge computing can be un-
derstood as a specific case of the MCC. Nevertheless, in
the conventional MCC, the cloud services are accessed via
the Internet connection [3] while in the case of the edge
computing, the computing/storage resources are supposed to
be in proximity of the UEs (in sense of network topology).
Hence, the MEC can offer significantly lower latencies and
jitter when compared to the MCC. Moreover, while the MCC
is fully centralized approach with farms of computers usually
placed at one or few locations, the edge computing is supposed
to be deployed in fully distributed manner. On the other hand,
the edge computing provides only limited computational and
storage resources with respect to the MCC. A high level
comparison of key technical aspects of the MCC and the edge
computing is outlined in Table I.

The first edge computing concept bringing the computa-
tion/storage closer to the UEs, proposed in 2009, is cloudlet
[4]. The idea behind the cloudlet is to place computers with
high computation power at strategic locations in order to
provide both computation resources and storage for the UEs
in vicinity. The cloudlet concept of the computing ”hotspots”
is similar to WiFi hotspots scenario, but instead of Internet
connectivity the cloudlet enables cloud services to the mobile
users. The fact that cloudlets are supposed to be mostly

TABLE I: High level comparison of MCC and Edge comput-
ing concepts

Technical aspect MCC Edge computing

Deployment Centralized Distributed
Distance to the UE High Low
Latency High Low
Jitter High Low
Computational power Ample Limited
Storage capacity Ample Limited
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accessed by the mobile UEs through WiFi connection is seen
as a disadvantage since the UEs have to switch between
the mobile network and WiFi whenever the cloudlet services
are exploited [2]. Moreover, QoS (Quality of Service) of the
mobile UEs is hard to fulfill similarly as in case of the MCC,
since the cloudlets are not an inherent part of the mobile
network and coverage of WiFi is only local with limited
support of mobility.

The other option enabling cloud computing at the edge
is to perform computing directly at the UEs through ad-
hoc cloud allowing several UEs in proximity to combine
their computation power and, thus, process high demanding
applications locally [5]-[14]. To facilitate the ad-hoc cloud,
several critical challenges need to be addressed; 1) finding
proper computing UEs in proximity while guaranteeing that
processed data will be delivered back to the source UE, 2)
coordination among the computing UEs has to be enabled
despite the fact that there are no control channels to facil-
itate reliable computing, 3) the computing UEs has to be
motivated to provide their computing power to other devices
given the battery consumption and additional data transmission
constraints, 4) security and privacy issues.

A more general concept of the edge computing, when
compared to cloudlets and ad-hoc clouds, is known as a fog
computing. The fog computing paradigm (shortly often ab-
breviated as Fog in literature) has been introduced in 2012 by
Cisco to enable a processing of the applications on billions of
connected devices at the edge of network [15]. Consequently,
the fog computing may be considered as one of key enablers
of Internet of Things (IoT) and big data applications [16] as it
offers: 1) low latency and location awareness due to proximity
of the computing devices to the edge of the network, 2) wide-
spread geographical distribution when compared to the CC; 3)
interconnection of very large number of nodes (e.g., wireless
sensors), and 4) support of streaming and real time applica-
tions [15]. Moreover, the characteristics of the fog computing
can be exploited in many other applications and scenarios such
as smart grids, connected vehicles for Intelligent Transport
Systems (ITS) or wireless sensor networks [17]-[20].

From the mobile users’ point of view, the most notable
drawback of all above-mentioned edge computing concepts
is that QoS and QoE (Quality of Experience) for users can
be hardly guaranteed, since the computing is not integrated
into an architecture of the mobile network. One concept
integrating the cloud capabilities into the mobile network is
Cloud Radio Access Network (C-RAN) [21]. The C-RAN
exploits the idea of distributed protocol stack [22], where some
layers of the protocol stack are moved from distributed Radio
Remote Heads (RRHs) to centralized baseband units (BBUs).
The BBU’s computation power is, then, pooled together into
virtualized resources that are able to serve tens, hundreds or
even thousands of RRHs. Although the computation power
of this virtualized BBU pool is exploited primarily for a
centralized control and baseband processing it may also be
used for the computation offloading to the edge of the network
(see, for example, [23]).

Another concept integrating the edge computing into the
mobile network architecture is developed by newly created

(2014) industry specification group (ISG) within European
Telecommunications Standards Institute (ETSI) [24]. The so-
lution outlined by ETSI is known as Mobile Edge Com-
puting (MEC). The standardization efforts relating the MEC
are driven by prominent mobile operators (e.g., DOCOMO,
Vodafone, TELECOM Italia) and manufactures (e.g., IBM,
Nokia, Huawei, Intel). The main purpose of ISG MEC group
is to enable an efficient and seamless integration of the cloud
computing functionalities into the mobile network, and to help
developing favorable conditions for all stakeholders (mobile
operators, service providers, vendors, and users).

Several surveys on cloud computing have been published
so far. In [3], the authors survey MCC application models
and highlight their advantages and shortcomings. In [25],
a problem of a heterogeneity in the MCC is tackled. The
heterogeneity is understood as a variability of mobile de-
vices, different cloud vendors providing different services,
infrastructures, platforms, and various communication medium
and technologies. The paper identifies how this heterogeneity
impacts the MCC and discusses related challenges. The au-
thors in [26] survey existing efforts on Cloud Mobile Media,
which provides rich multimedia services over the Internet and
mobile wireless networks. All above-mentioned papers focus,
in general, on the MCC where the cloud is not allocated
specifically at the edge of mobile network, but it is accessed
through the Internet. Due to a wide potential of the MEC,
there is a lot of effort both in industry and academia focusing
on the MEC in particular. Despite this fact, there is just one
survey focusing primarily on the MEC [27] that, however,
only briefly surveys several research works dealing with the
MEC and presents taxonomy of the MEC by describing
key attributes. Furthermore, the authors in [28] extensively
surveys security issues for various edge computing concepts.
On top of that, the authors in [29] dedicate one chapter to the
edge computing, where applications of economic and pricing
models are considered for resource management in the edge
computing.

In contrast to the above-mentioned surveys, we describe
key use cases and scenarios for the MEC (Section II). Then,
we survey existing MEC concepts proposed in the literature
integrating the MEC functionalities into the mobile networks
and we discuss standardization of the MEC (Section III).
After that, the core part of the paper is focused on technical
works dealing with computation offloading to the MEC. On
one hand, the computation offloading can be seen as a key
use case from the user perspective as it enables running
new sophisticated applications at the UE while reducing its
energy consumption (see, e.g., [30]-[36] where computation
offloading to distant CC is assumed). On the other hand,
the computation offloading brings several challenges, such
as selection of proper application and programming models,
accurate estimation of energy consumption, efficient manage-
ment of simultaneous offloading by multiple users, or virtual
machine (VM) migration [37]. In this respect, we overview
several general principles related to the computation offload-
ing, such as offloading classification (full, partial offloading),
factors influencing the offloading itself, and management of
the offloading in practice (Section IV). Afterwards, we sort the
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Fig. 1: Example of use cases and scenarios for the MEC.

efforts within research community addressing following key
challenges regarding computation offloading into the MEC:

• A decision on the computation offloading to the MEC
with the purpose to determine whether the offloading is
profitable for the UE in terms of energy consumption
and/or execution delay (Section V).

• An efficient allocation of the computing resources
within the MEC if the computation is offloaded in order to
minimize execution delay and balance load of both com-
puting resources and communication links (Section VI).

• Mobility management for the applications offloaded
to the MEC guaranteeing service continuity if the UEs
exploiting the MEC roams throughout the network (Sec-
tion VII).

Moreover, we summarize the lessons learned from state of the
art focused on computation offloading to the MEC (Section
VIII) and outline several open challenges, which need to be
addressed to make the MEC beneficial for all stakeholders
(Section IX). Finally, we summarize general outcomes and
draw conclusions (Section X).

II. USE CASES AND SERVICE SCENARIOS

The MEC brings many advantages to all stakeholders, such
as mobile operators, service providers or users. As suggested
in [38][39], three main use case categories, depending on the
subject to which they are profitable to, can be distinguished for
the MEC (see Fig. 1). The next subsections discuss individual
use case categories and pinpoint several key service scenarios
and applications.

A. Consumer-oriented services

The first use case category is consumer-oriented and, hence,
should be beneficial directly to the end-users. In general, the
users profit from the MEC mainly by means of the computa-
tion offloading, which enables running new emerging applica-
tions at the UEs. One of the applications benefiting from the
computation offloading is a web accelerated browser, where
most of the browsing functions (web contents evaluation,
optimized transmission, etc.) are offloaded to the MEC; see
experimental results on offloading of web accelerated browser
to the MEC in [40]. Moreover, face/speech recognition or
image/video editing are also suitable for the MEC as these
require large amount of computation and storage [41].

Besides, the computation offloading to the MEC can be
exploited by the applications based on augmented, assisted or
virtual reality. These applications derive additional information
about users’ neighborhood by performing an analysis of their
surroundings (e.g., visiting tourists may find points of interest
in his/her proximity). This may require fast responses, and/or
significant amount of computing resources not available at
the UE. An applicability of the MEC for augmented reality
is shown in [42]. The authors demonstrate on a real MEC
testbed that the reduction of latency up to 88% and energy
consumption of the UE up to 93% can be accomplished by
the computation offloading to the MEC.

On top of that, the users running low latency applications,
such as online gaming or remote desktop, may profit from
the MEC in proximity. In this case a new instance of a
specific application is initiated at an appropriate mobile edge
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host to reduce the latency and resources requirements of the
application at the UE.

B. Operator and third party services

The second use case category is represented by the services
from which operators and third parties can benefit. An example
of the use case profitable for the operator or third party is a
gathering of a huge amount of data from the users or sensors.
Such data is first pre-processed and analyzed at the MEC.
The pre-processed data is, then, sent to distant central servers
for further analysis. This could be exploited for safety and
security purposes, such as monitoring of an area (e.g., car
park monitoring).

Another use case is to exploit the MEC for IoT (Inter-
net of Thing) purposes [43]-[45]. Basically, IoT devices are
connected through various radio technologies (e.g., 3G, LTE,
WiFi, etc.) using diverse communication protocols. Hence,
there is a need for low latency aggregation point to handle
various protocols, distribution of messages and for processing.
This can be enabled by the MEC acting as an IoT gateway,
which purpose is to aggregate and deliver IoT services into
highly distributed mobile base stations in order to enable
applications responding in real time.

The MEC can be also exploited for ITS to extend the
connected car cloud into the mobile network. Hence, road-
side applications running directly at the MEC can receive
local messages directly from applications in the vehicles and
roadside sensors, analyze them and broadcast warnings (e.g.,
an accident) to nearby vehicles with very low latency. The
exploitation of the MEC for car-to-car and car-to-infrastructure
communications was demonstrated by Nokia and its partners
in an operator’s LTE network just recently in 2016 [46][47].

C. Network performance and QoE improvement services

The third category of use cases are those optimizing network
performance and/or improving QoE. One such use case is to
enable coordination between radio and backhaul networks. So
far, if the capacity of either backhaul or radio link is degraded,
the overall network performance is negatively influenced as
well, since the other part of the network (either radio or
backhaul, respectively) is not aware of the degradation. In
this respect, an analytic application exploiting the MEC can
provide real-time information on traffic requirements of the
radio/backhaul network. Then, an optimization application,
running on the MEC, reshapes the traffic per application or
re-routes traffic as required.

Another way to improve performance of the network is to
alleviate congested backhaul links by local content caching at
the mobile edge. This way, the MEC application can store
the most popular content used in its geographical area. If
the content is requested by the users, it does not have to be
transfered over the backhaul network.

Besides alleviation and optimization of the backhaul net-
work, the MEC can also help in radio network optimization.
For example, gathering related information from the UEs and
processing these at the edge will result in more efficient

scheduling. In addition, the MEC can also be used for mo-
bile video delivery optimization using throughput guidance
for TCP (Transmission Control Protocols). The TCP has an
inherent difficulty to adapt to rapidly varying condition on
radio channel resulting in an inefficient use of the resources.
To deal with this problem, the analytic MEC application can
provide a real-time indication on an estimated throughput to
a backend video server in order to match the application-level
coding to the estimated throughput.

III. MEC ARCHITECTURE AND STANDARDIZATION

This section introduces and compares several concepts for
the computation at the edge integrated to the mobile network.
First, we overview various MEC solutions proposed in the
literature that enable to bring computation close to the UEs.
Secondly, we describe the effort done within ETSI standard-
ization organization regarding the MEC. Finally, we compare
individual existing MEC concepts (proposed in both literature
and ETSI) from several perspectives, such as MEC control or
location of the computation/storage resources.

A. Overview of the MEC concept

In recent years, several MEC concepts with purpose to
smoothly integrate cloud capabilities into the mobile network
architecture have been proposed in the literature. This section
briefly introduces fundamental principles of small cell cloud
(SCC), mobile micro cloud (MMC), fast moving personal
cloud, follow me cloud (FMC), and CONCERT. Moreover,
the section shows enhancements/modifications to the network
architecture necessary for implementation of each MEC con-
cept.

1) Small cell cloud (SCC): The basic idea of the SCC,
firstly introduced in 2012 by the European project TROPIC
[48][53], is to enhance small cells (SCeNBs), like microcells,
picocells or femtocells, by an additional computation and
storage capabilities. The similar idea is later on addressed in
SESAME project as well, where the cloud-enabled SCeNBs
supports the edge computing [49][50]. The cloud-enhanced
SCeNBs can pool their computation power exploiting network
function virtualization (NFV) [51][52] paradigm. Because a
high number of the SCeNBs is supposed to be deployed in
future mobile networks, the SCC can provide enough compu-
tation power for the UEs, especially for services/applications
having stringent requirements on latency (the examples of such
applications are listed in Section II-A).

In order to fully and smoothly integrate the SCC concept
into the mobile network architecture, a new entity, denoted as
a small cell manager (SCM), is introduced to control the SCC
[53]. The SCM is in charge of the management of the comput-
ing and/or storage resources provided by the SCeNBs. Since
the SCeNBs can be switched on/off at any time (especially
if owned by the users as in case of the femtocells), the SCM
performs dynamic and elastic management of the computation
resources within the SCC. The SCM is aware of the overall
cluster context (both radio and cloud-wise) and decides where
to deploy a new computation or when to migrate an on-going
computation to optimize the service delivery for the end-user.
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Fig. 2: SCC architecture (MME - Mobility Management Entity, HSS - Home Subscriber Server, S-GW - Serving Gateway,
P-GW - Packet Gateway).

The computing resources are virtualized by means of Virtual
Machine (VM) located at the SCeNBs. An important aspect
regarding the architecture of the SCC is deployment of the
SCM (see Fig. 2). The SCM may be deployed in a centralized
manner either as a standalone SCM located within the RAN,
close to a cluster of the SCeNBs, or as an extension to a
MME [53][54]. Moreover, the SCM can be deployed also in a
distributed hierarchical manner, where a local SCM (L-SCM)
or a virtual L-SCM (VL-SCM) manages the computing and
storage resources of the SCeNBs’ clusters in vicinity while a
remote SCM (R-SCM), located in the CN, has resources of all
SCeNBs connected to the CN at its disposal [55] (see Fig. 2b).

2) Mobile micro clouds (MMC): The concept of the MMC
has been firstly introduced in [56]. Like the SCC, also the
MMC allows users to have instantaneous access to the cloud
services with a low latency. While in the SCC the computa-
tion/storage resources are provided by interworking cluster(s)
of the SCeNBs, the UEs exploit the computation resources
of a single MMC, which is typically connected directly to a
wireless base station (i.e., the eNB in the mobile network) as
indicated in Fig. 3. The MMC concept does not introduce any
control entity into the network and the control is assumed to be

Fig. 3: MMC architecture.

fully distributed in a similar way as the VL-SCM solution for
the SCC. To this end, the MMCs are interconnected directly
or through backhaul in order to guarantee service continuity
if the UEs move within the network to enable smooth VM
migration among the MMCs (see more detail on VM migration
in Section VII-B).

3) Fast moving personal cloud (MobiScud): The MobiScud
architecture [57] integrates the cloud services into the mobile
networks by means of software defined network (SDN) [58]
and NFV technologies whilst maintaining backward compati-
bility with existing mobile network. When compared to the
SCC and the MMC concepts, the cloud resources in the
MobiScud are not located directly at the access nodes such as
SCeNB or eNB, but at operator’s clouds located within RAN
or close to RAN (see Fig. 4). Still, these clouds are assumed
to be highly distributed similarly as in case of the SCC and
the MMC enabling the cloud service to all UEs in vicinity.

Analogously to the SCC, the MobiScud introduces a new
control entity, a MobiScud control (MC), which interfaces
with the mobile network, SDN switches and the cloud of
the operator. Basically, the MC has two functionalities: 1)
monitoring control plane signaling message exchange between

Fig. 4: MobiScud architecture [57].
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mobile network elements to be aware of the UEs activity (e.g.,
handover) and 2) orchestrating and routing data traffic within
SDN enabled transport network to facilitate the application
offloading and the VM migration if the UE moves throughout
the network.

4) Follow me cloud (FMC): The key idea of the FMC
is that the cloud services running at distributed data centers
(DCs) follow the UEs as they roam throughout the network
[59][60] in the same way as in the case of the MobiScud.
When compared to the previous MEC concepts, the com-
puting/storage power is moved farther from the UEs; into
the CN network of the operator. Nevertheless, while previous
MEC concepts assume rather centralized CN deployment, the
FMC leverages from the fact that the mobile operators need
to decentralize their networks to cope with growing number
of the UEs. In this respect, the centralized CN used in the
current network deployment is assumed to be replaced by a
distributed one as shown in Fig. 5. For a convenience of the
mobile operators, the DC may be located at the same place as
the distributed S/P-GWs.

Similarly as the SCC and the MobiScud, the FMC intro-
duces new entities into the network architecture; a DC/GW
mapping entity and an FMC controller (FMCC). These can
be either functional entities collocated with existing network
nodes or a software run on any DC (i.e., exploiting NFV
principles like the SCC or MobiScud concepts). The DC/GW
mapping entity maps the DCs to the distributed S/P-GWs
according to various metrics, such as, location or hop count
between DC and distributed CN, in static or dynamic manner.
The FMCC manages DCs’ computation/storage resources,
cloud services running on them, and decides which DC should
be associated to the UE using the cloud services. The FMCC
may be deployed either centrally (as shown in Fig. 5) or
hierarchically [61] with global FMCC (G-FMCC) and local
FMCC (L-FMCC) for better scalability (controlled similarly
as in the SCC as explained in Section III-A1). Note that the
FMC itself may be also decentrally controlled by omitting
the FMCC altogether. In such a case, the DCs coordinate
themselves in a self-organizing manner.

Fig. 5: The network architecture enabling FMC concept (cen-
tralized solution).

Fig. 6: CONCERT architecture.

5) CONCERT: A concept converging cloud and cellular
systems, abbreviated as CONCERT, has been proposed in
[62]. The CONCERT assumes to exploit NFV principles and
SDN technology like above-mentioned solutions. Hence, the
computing/storage resources, utilized by both conventional
mobile communication and cloud computing services, are
presented as virtual resources. The control plain is basically
consisted of a conductor, which is a control entity man-
aging communication, computing, and storage resources of
the CONCERT architecture. The conductor may be deployed
centrally or in a hierarchical manner for better scalability
as in the SCC or FMC. The data plain consists of radio
interface equipments (RIEs) physically representing the eNB,
SDN switches, and computing resources (see Fig. 6). The
computing resources are used both for baseband processing
(similarly as in C-RAN) and for handling an application level
processing (e.g., for the application offloading). In all already
described MEC concepts, the computation/storage resources
have been fully distributed. The CONCERT proposes rather
hierarchically placement of the resources within the network to
flexibly and elastically manage the network and cloud services.
In this respect, local servers with a low computation power
are assumed to be located directly at the physical base station
(e.g., similarly as in the SCC or the MMC) and, if the local
resources are not sufficient, regional or even central servers
are exploited as indicated in Fig. 6.

B. ETSI MEC

Besides all above-mentioned solutions, also ETSI is cur-
rently deeply involved in standardization activities in order to
integrate the MEC into the mobile networks. In this regard,
we briefly summarize the standardization efforts on the MEC
within ETSI, describe reference architecture according to
ETSI, and contemplate various options for the MEC deploy-
ment that are considered so far.

1) Standardization of ETSI MEC: Standardization of the
MEC is still in its infancy, but drafts of specifications have
already been released by ISG MEC. The terminology used in
individual specifications relating to conceptual, architectural
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and functional elements is described in [63]. The main purpose
of this document is to ensure the same terminology is used
by all ETSI specifications related to the MEC. A framework
exploited by ISG MEC for coordination and promotion of
MEC is defined in proof of concept (PoC) specification [64].
The basic objectives of this document is to describe the PoC
activity process in order to promote the MEC, illustrate key
aspects of the MEC and build a confidence in viability of
the MEC technology. Further, several service scenarios that
should benefit from the MEC and proximity of the cloud
services is presented in [65] (see Section II for more detail).
Moreover, technical requirements on the MEC to guarantee
interoperability and to promote MEC deployment are intro-
duced in [38]. The technical requirements are divided into
generic requirements, service requirements, requirements on
operation and management, and finally security, regulations
and charging requirements.

2) ETSI MEC reference architecture: The reference archi-
tecture, described by ETSI in [66], is composed of functional
elements and reference points allowing interaction among
them (see Fig. 7). Basically, the functional blocks may not
necessarily represent physical nodes in the mobile network, but
rather software entities running on the top of a virtualization
infrastructure. The virtualization infrastructure is understood
as a physical data center on which the VMs are run and the
VMs represent individual functional elements. In this respect,
it is assumed that some architectural features from ETSI NFV
group, which runs in parallel to ETSI MEC, will be reused for
the MEC reference architecture as well, since the basic idea
of NFV is to virtualize all network node functions.

As shown in Fig. 7, the MEC can be exploited either by
a UE application located directly in the UE, or by third
party customers (such as commercial enterprise) via customer
facing service (CFS) portal. Both the UE and the CFS portal
interact with the MEC system through a MEC system level
management. The MEC system level management includes a
user application lifecycle management (LCM) proxy, which
mediate the requests, such as initiation, termination or relo-
cations of the UE’s application within the MEC system to

Fig. 7: MEC reference architecture [66].

the operation support system (OSS) of the mobile operator.
Then, the OSS decides if requests are granted or not. The
granted requests are forwarded to a mobile edge orchestrator.
The mobile edge orchestrator is the core functionality in
the MEC system level management as it maintains overall
view on available computing/storage/network resources and
the MEC services. In this respect, the mobile edge orchestrator
allocates the virtualized MEC resources to the applications
that are about to be initiated depending on the applications
requirements (e.g., latency). Furthermore, the orchestrator also
flexibly scales down/up available resources to already running
applications.

The MEC system level management is interconnected with
a MEC server level management constituting a mobile edge
platform and a virtualization platform manager. The former
one manages the life cycle of the applications, application
rules and service authorization, traffic rules, etc. The latter
one is responsible for allocation, management and release of
the virtualized computation/storage resources provided by the
virtualization infrastructure located within the MEC server.
The MEC server is an integral part of the reference architecture
as it represents the virtualized resources and hosts the MEC
applications running as the VMs on top of the virtualization
infrastructure.

3) Deployment options of ETSI MEC: As already men-
tioned in the previous subsection, the MEC services will be
provided by the MEC servers, which have the computation and
storage resources at their disposal. There are several options
where the MEC servers can be deployed within the mobile
network. The first option is to deploy the MEC server directly
at the base station similarly as in case of the SCC or the MCC
(see Section III-A1 and Section III-A2). Note that in case of
a legacy network deployment, such as 3G networks, the MEC
servers may be deployed at 3G Radio Network Controllers
as well [38]. The second option is to place the MEC servers
at cell aggregation sites or at multi-RAT aggregation points
that can be located either within an enterprise scenario (e.g.,
company) or a public coverage scenario (e.g., shopping mall,
stadium, airport, etc.). The third option is to move the MEC
server farther from the UEs and locate it at the edge of CN
analogously to the FMC (Section III-A4).

Of course, selection of the MEC server deployment depends
on many factors, such as, scalability, physical deployment
constraints and/or performance criteria (e.g., delay). For ex-
ample, the first option with fully distributed MEC servers
deployment will result in very low latencies since the UEs
are in proximity of the eNB and, hence, in proximity of the
MEC server. Contrary, the UEs exploiting the MEC server
located in the CN will inevitably experience longer latencies
that could prevent a use of real-time applications. An initial
study determining where to optimally install the MEC servers
within the mobile network with the primary objective to find
a trade-off between installation costs and QoS measured in
terms of latency is presented in [67] and further elaborated
in [68]. Based on these studies, it is expected that, similarly
as in CONCERT framework (see Section III-A5), the MEC
servers with various computation power/storage capacities will
be scattered throughout the network. Hence, the UEs requiring
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TABLE II: Comparison of existing MEC concepts.

MEC con-
cept

Control en-
tity

Control manner Control placement Computation/storage placement

SCC SCM Centralized, decentralized hierar-
chical (depending on SCM type
and placement)

In RAN (e.g., at eNB) or in CN
(e.g., SCM collocated with MME)

SCeNB, cluster of SCeNBs

MMC - Decentralized MMC (eNB) eNB
MobiScud MC Decentralized Between RAN and CN Distributed cloud within RAN or

close to RAN
FMC FMCC Centralized, decentralized

hierarchical (option with
hierarchical FMCC), decentralized
(option without FMC controller)

Collocated with existing node (e.g.,
node in CN) or run as software on
DC

DC close or collocating with dis-
tributed CN

CONCERT Conductor Centralized, decentralized hierar-
chical

N/A (it could be done in the same
manner as in FMC concept)

eNB (RIE), regional and central
servers

ETSI MEC Mobile edge
orchestrator

Centralized N/A (the most feasible option is to
place control into CN

eNB, aggregation point, edge of
CN

only a low computation power will be served by the local
MEC servers collocated directly with the eNB, while highly
demanding applications will be relegated to more powerful
MEC servers farther from the UEs.

C. Summary

This section mutually compares the MEC concepts proposed
in literature with the vision of the MEC developed under ETSI.
There are two common trends followed by individual MEC
solutions that bring cloud to the edge of mobile network.
The first trend is based on virtualization techniques exploiting
NFVs principles. The network virtualization is a necessity in
order to flexibly manage virtualized resources provided by the
MEC. The second trend is a decoupling the control and data
planes by taking advantage of SDN paradigm, which allows a
dynamic adaptation of the network to changing traffic patterns
and users requirements. The use of SDN for the MEC is also in
line with current trends in mobile networks [69]-[71]. Regard-
ing control/signaling, the MMC and MobiScud assume fully
decentralize approach while the SCC, FMC, and CONCERT
adopt either fully centralized control or hierarchical control
for better scalability and flexibility.

If we compare individual MEC concepts in terms of com-
putation/storage resources deployment, the obvious effort is
to fully distribute these resources within the network. Still,
each MEC concept differs in the location, where the compu-
tation/storage resources are physically located. While the SCC,
MMC and MobiScud assume to place the computation close to
the UEs within RAN, the FMC solution considers integration
of the DCs farther away, for example, in a distributed CN.
On top of that, CONCERT distributes the computation/storage
resources throughout the network in a hierarchical manner so
that a low demanding computation application are handled
locally and high demanding applications are relegated either
to regional or central servers. Concerning ETSI MEC, there
are also many options where to place MEC servers offering
computation/storage resources to the UEs. The most probable
course of action is that the MEC servers will be deployed
everywhere in the network to guarantee high scalability of the
computation/storage resources. The comparison of all existing
MEC concepts is shown in Table II.

IV. INTRODUCTION TO COMPUTATION OFFLOADING

From the user perspective, a critical use case regarding the
MEC is a computation offloading as this can save energy
and/or speed up the process of computation. In general, a
crucial part regarding computation offloading is to decide
whether to offload or not. In the former case, also a question
is how much and what should be offloaded [41]. Basically, a
decision on computation offloading may result in:
• Local execution - The whole computation is done locally

at the UE (see Fig. 8). The offloading to the MEC is not
performed, for example, due to unavailability of the MEC
computation resources or if the offloading simply does not
pay off.

• Full offloading - The whole computation is offloaded and
processed by the MEC.

• Partial offloading - A part of the computation is processed
locally while the rest is offloaded to the MEC.
The computation offloading, and partial offloading in par-

ticular, is a very complex process affected by different factors,
such as users preferences, radio and backhaul connection
quality, UE capabilities, or cloud capabilities and availability
[3]. An important aspect in the computation offloading is also
an application model/type since it determines whether full or
partial offloading is applicable, what could be offloaded, and
how. In this regard, we can classify the applications according
to several criteria:

Fig. 8: Possible outcomes of computation offloading decision.
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Fig. 9: An example of partial offloading for application
without non-offloadable part(s) (a) and application with non-
offloadable part (b).

• Offloadability of application - The application enabling
code or data partitioning and parallelization (i.e., applica-
tion that may be partially offloaded) can be categorized
into two types. The first type of the applications is the app,
which can be divided into N offloadable parts that all can
be offloaded (see Fig. 9a). Since each offloadable part may
differ in the amount of data and required computation, it
is necessary to decide which parts should be offloaded to
the MEC. In the example given in Fig. 9a, 1st, 2nd, 3nd,
6th, and 9th parts are processed locally while the rest is
offloaded to the MEC. Notice that in the extreme case, this
type of application may be fully offloaded to the MEC if
no parts are processed by the UE. The second type of the
applications is always composed of some non-offloadable
part(s) that cannot be offloaded (e.g., user input, camera, or
acquire position that needs to be executed at the UE [72])
and M offloadable parts. In Fig. 9b, the UE processes the
whole non-offloadable part together with 2nd, 6th, and 7th

parts while the rest of the application is offloaded to the
MEC.

Fig. 10: Dependency of offloadable components [72].

• Knowledge on the amount of data to be processed - The
applications can be classified according to the knowledge
on the amount of data to be processed. For the first type
of the applications (represented, e.g., by face detection,
virus scan, etc.,) the amount of data to be processed is
known beforehand. For the second type of the applications,
it is not possible to estimate the amount of data to be
processed as these are continuous-execution application and
there is no way to predict how long they will be running
(such as, online interactive games) [95]. It is obvious that
decision on computation offloading could be quite tricky
for continuous-execution application.

• Dependency of the offloadable parts - The last criterion
for classification of application to be offloaded is a mutual
dependency of individual parts to be processed. The parts
of the application can be either independent on each other
or mutually dependent. In the former case, all parts can
be offloaded simultaneously and processed in parallel. In
the latter case, however, the application is composed of
parts (components) that need input from some others and
parallel offloading may not be applicable. Note that the
relationship among individual components can be expressed
by component dependency graph (CDG) or call graph
(CG) (see, e.g., [34][41][72][73]). The relationship among
the components is illustrated in Fig. 10, where the whole
application is divided into M non-offloadable parts (1st, 4th,
and 6th part in Fig. 10) and N offloadable parts (2nd, 3rd,
and 5th part in Fig. 10). In the given example, 2nd and 3rd

part can be offloaded only after execution of the 1st part
while the 5th part can be offloaded after execution of the
1st - 4th parts.
The other important aspect regarding computation offload-

ing is how to utilize and manage offloading process in practice.
Basically, the UE needs to be composed of a code profiler,
system profiler, and decision engine [36]. The code profiler’s
responsibility is to determine what could be offloaded (depend-
ing on application type and code/data partitioned as explained
above). Then, the system profiler is in charge of monitoring
various parameters, such as available bandwidth, data size to
be offloaded or energy spent by execution of the applications
locally. Finally, decision engine determines whether to offload
or not.

The next sections survey current research works focus-
ing on following pivotal research topics: 1) decision on the
computation offloading to the MEC, 2) efficient allocation of
the computation resources within the MEC, and 3) mobility
management for the moving users exploiting MEC services.
Note that from now on we use explicitly the terminology
according to ETSI standardization activities. Consequently, we
use term MEC server as a node providing computing/storage
resources to the UEs instead of DC, MMC, etc.

V. DECISION ON COMPUTATION OFFLOADING TO MEC
This section surveys current research related to the decision

on the computation offloading to the MEC. The papers are
divided into those considering either only the full offloading
(Section V-A) or those taking into account also possibility of
the partial offloading (Section V-B).
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Fig. 11: The example of offloading decision aiming minimiza-
tion of execution delay.

A. Full offloading

The main objective of the works focused on the full offload-
ing decision is to minimize an execution delay (Section V-A1),
to minimize energy consumption at the UE while predefined
delay constraint is satisfied (Section V-A2), or to find a
proper trade-off between both the energy consumption and
the execution delay (Section V-A3).

1) Minimization of execution delay: One of the advantages
introduced by the computation offloading to the MEC is a
possibility to reduce the execution delay (D). In case the
UE performs all computation by itself (i.e., no offloading
is performed), the execution delay (Dl) represents solely
the time spent by the local execution at the UE. In case
of the computation offloading to the MEC, the execution
delay (Do) incorporates three following parts: 1) transmission
duration of the offloaded data to the MEC (Dot), 2) compu-
tation/processing time at the MEC (Dop), and 3) time spent
by reception of the processed data from the MEC (Dor). The
simple example of the computation offloading decision based
solely on the execution delay is shown in Fig. 11. It could be
observed that the UE1 performs all computation locally since
the local execution delay is significantly lower than expected
execution delay for the computation offloading to the MEC
(i.e., Dl < Do). Contrary, a better alternative for the UE2 is
to fully offload data to the MEC as the local execution would
result in notable higher execution delay (i.e., Dl > Do).

The goal to minimize execution delay is pursued by the au-
thors in [74]. This is accomplished by one-dimensional search
algorithm, which finds an optimal offloading decision policy
according to the application buffer queuing state, available
processing powers at the UE and at the MEC server, and
characteristic of the channel between the UE and the MEC
server. The computation offloading decision itself is done at
the UE by means of a computation offloading policy module

Fig. 12: Computation offloading considered in [74] (CSI stands
for channel state information).

(see Fig. 12). This module decides, during each time slot,
whether the application waiting in a buffer should be processed
locally or at the MEC while minimizing the execution delay.
The performance of the proposed algorithm is compared to
the local execution policy (computation done always locally),
cloud execution policy (computation performed always by the
MEC server), and greedy offloading policy (UE schedules
data waiting in the buffer whenever the local CPU or the
transmission unit is idle). The simulation results show that the
proposed optimal policy is able to reduce execution delay by
up to 80% (compared to local execution policy) and roughly
up to 44% (compared to cloud execution policy) as it is able to
cope with high density of applications’ arrival. The drawback
of the proposed method is that the UE requires feedback from
the MEC server in order to make the offloading decision, but
the generated signaling overhead is not discussed in the paper.

Another idea aiming at minimization of the execution de-
lay is introduced in [75]. When compared to the previous
study, the authors in [75] also reduce application failure
for the offloaded applications. The paper considers the UE
applies dynamic voltage and frequency scaling (DVS) [76]
and energy harvesting techniques [77] to minimize the energy
consumption during the local execution and a power control
optimizing data transmission for the computation offload-
ing. In this respect, the authors propose a low-complexity
Lyapunov optimization-based dynamic computation offloading
(LODCO) algorithm. The LODCO makes offloading decision
in each time slot and subsequently allocates CPU cycles for
the UE (if the local execution is performed) or allocates trans-
mission power (if the computation offloading is performed).
The proposed LODCO is able to reduce execution time by up
to 64% by offloading to the MEC. Furthermore, the proposal
is able to completely prevent a situation when offloaded
application would be dropped.

The drawback of both above-mentioned papers is that the
offloading decision does not take into account energy con-
sumption at the side of UE as fast battery depletion impose
significant obstacle in contemporary networks. In [75], the
energy aspect of the UE is omitted in the decision process
since the paper assumes that the UEs exploit energy harvesting
techniques. The harvesting technique, however, is not able to
fully address energy consumption problem by itself.

2) Minimization of energy consumption while satisfying
execution delay constraint: The main objective of the papers
surveyed in this section is to minimize the energy con-
sumption at the UE while the execution delay constraint of
the application is satisfied. On one hand, the computation
offloaded to the MEC saves battery power of the UE since
the computation does not have to be done locally. On the
other hand, the UE spends certain amount of energy in order
to: 1) transmit offloaded data for computation to the MEC
(Eot) and 2) receive results of the computation from the MEC
(Eor). The simple example of the computation offloading
decision primarily based on the energy consumption is shown
in Fig. 13. In the given example, the UE1 decides to perform
the computation locally since the energy spent by the local
execution (El) is significantly lower than the energy required
for transmission/reception of the offloaded data (E0). Contrary,
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Fig. 13: The example of computation offloading decision based on energy consumption while satisfying execution delay
constraint.

the UE2 offloads data to the MEC as the energy required by the
computation offloading is significantly lower than the energy
spent by the local computation. Although the overall execution
delay would be lower if the UE1 offloads computation to
the MEC and also if the UE2 performs the local execution,
the delay is still below maximum allowed execution delay
constraint (i.e., Dl < Dmax). Note that if only the execution
delay would be considered for the offloading decision (as
considered in Section V-A3), both UEs would unnecessarily
spent more energy.

The computation offloading decision minimizing the energy
consumption at the UE while satisfying the execution delay
of the application is proposed in [78]. The optimization prob-
lem is formulated as a constrained Markov decision process
(CMDP). To solve the optimization problem, two resource
allocation strategies are introduced. The first strategy is based
on an online learning, where the network adapts dynamically
with respect to the application running at the UE. The second
strategy is pre-calculated offline strategy, which takes advan-
tage of a certain level of knowledge regarding the application
(such as arrival rates measured in packets per slot, radio
channel condition, etc.). The numerical experiments show that
the pre-calculated offline strategy is able to outperform the
online strategy by up to 50% for low and medium arrival
rates (loads). Since the offline resource allocation strategy
proposed in [78] shows its merit, the authors devise two
addition dynamic offline strategies for the offloading [79]:
deterministic offline strategy and randomized offline strategy.
It is demonstrated that both offloading offline strategies can
lead to significant energy savings comparing to the case when
the computing is done solely at the UE (energy savings up to
78%) or solely at the MEC (up to 15%).

A further extension of [79] from a single-UE to a multi-UEs
scenario is considered in [80]. The main objective is to jointly
optimize scheduling and computation offloading strategy for
each UE in order to guarantee QoE, fairness between the
UEs, low energy consumption, and average queuing/delay
constraints. The UEs that are not allowed to offload the
computation make either local computation or stay idle. It
is shown the offline strategy notably outperforms the online
strategies in terms of the energy saving (by roughly 50%).
In addition, the energy consumed by individual UEs strongly
depends on requirements of other UEs application.

Another offloading decision strategy for the multi-UEs
case minimizing the energy consumption at the UEs while

satisfying the maximum allowed execution delay is proposed
in [81]. A decision on the computation offloading is done
periodically in each time slot, during which all the UEs are
divided into two groups. While the UEs in the first group
are allowed to offload computation to the MEC, the UEs in
the second group have to perform computation locally due
to unavailable computation resources at the MEC (note that in
the paper, the computation is done at the serving SCeNB). The
UEs are sorted to the groups according to the length of queue,
that is, according to the amount of data they need to process.
After the UEs are admitted to offload the computation, joint
allocation of the communication and computation resources
is performed by finding optimal transmission power of the
UEs and allocation of the SCeNB’s computing resources to all
individual UEs. The performance of the proposal is evaluated
in terms of an average queue length depending on intensity of
data arrival and a number of antennas used at the UEs and the
SCeNB. It is shown that the more antennas is used, the less
transmission power at the UEs is needed while still ensuring
the delay constraint of the offloaded computation.

The main weak point of [81] is that it assumes only a single
SCeNB and, consequently, there is no interference among the
UEs connected to various SCeNBs. Hence, the work in [81]
is extended in [82] to the multi-cell scenario with N SCeNBs
to reflect the real network deployment. Since the formulated
optimization problem in [81] is no longer convex, the authors
propose a distributed iterative algorithm exploiting Successive
Convex Approximation (SCA) converging to a local optimal
solution. The numerical results demonstrate that the proposed
joint optimization of radio and computational resources signifi-
cantly outperforms methods optimizing radio and computation
separately. Moreover, it is shown that the applications with
fewer amount of data to be offloaded and, at the same time,
requiring high number of CPU cycles for processing are more
suitable for the computation offloading. The reason is that the
energy spent by the transmission/reception of the offloaded
data to the MEC is significantly lower than the energy savings
at the UE due to the computation offloading. The work in
[82] is further extended in [83] by a consideration of multi-
clouds that are associated to individual SCeNBs. The results
show that with an increasing number of the SCeNBs (i.e., with
increasing number of clouds), the energy consumption of the
UE proportionally decreases.

The same goal as in previous paper is achieved in [84] by
means of an energy-efficient computation offloading (EECO)
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algorithm. The EECO is divided into three stages. In the
first stage, the UEs are classified according to their time and
energy cost features of the computation to: 1) the UEs that
should offload the computation to the MEC as the UEs cannot
satisfy the execution latency constraint, 2) the UEs that should
compute locally as they are able to process it by itself while
the energy consumption is below a predefined threshold, and
3) the UEs that may offload the computation or not. In the
second stage, the offloading priority is given to the UEs from
the first and the third set determined by their communication
channels and the computation requirements. In the third stage,
the eNBs/SCeNBs allocates radio resources to the UEs with
respect to given priorities. The computational complexity of
the EECO is O(max(I2 + N, IK + N)), where I is the
number of iterations, N stands for amount of UEs, and K
represents the number of available channels. According to
presented numerical results, the EECO is able to decrease
the energy consumption by up to 15% when compared to the
computation without offloading. Further, it is proofed that with
increasing computational capabilities of the MEC, the number
of UEs deciding to offload the computation increases as well.

3) Trade-off between energy consumption and execution
delay: The computation offloading decision for the multi-
user multi-channel environment considering a trade-off be-
tween the energy consumption at the UE and the execution
delay is proposed in [85]. Whether the offloading decision
prefers to minimize energy consumption or execution delay
is determined by a weighing parameter. The main objective
of the paper is twofold; 1) choose if the UEs should perform
the offloading to the MEC or not depending on the weighing
parameter and 2) in case of the computation offloading, select
the most appropriate wireless channel to be used for data
transmission. To this end, the authors present an optimal
centralized solution that is, however, NP-hard in the multi-
user multi-channel environment. Consequently, the authors
also propose a distributed computation offloading algorithm
achieving Nash equilibrium. Both the optimal centralized
solution and the distributed algorithm are compared in terms
of two performance metrics; 1) the amount of the UEs for
which the computation offloading to the MEC is beneficial and
2) the computation overhead expressed by a weighing of the
energy consumption and the execution delay. The distributed
algorithm performs only slightly worse than the centralized
one in both above-mentioned performance metrics. In addition,
the distributed algorithm significantly outperforms the cases
when all UEs compute all applications locally and when all
UEs prefer computing at the MEC (roughly by up to 40% for
50 UEs).

Other algorithm for the computation offloading decision
weighing the energy consumption at the UE and the execution
delay is proposed in [86]. The main difference with respect
to [85] is that the authors in [86] assume the computation
can be offloaded also to the remote centralized cloud (CC),
if computation resources of the MEC are not sufficient. The
computation offloading decision is done in a sequential man-
ner. In the first step, the UE decides whether to offload the
application(s) to the MEC or not. If the application is offloaded
to the MEC, the MEC evaluates, in the second step, if it is able

to satisfy the request or if the computation should be farther
relayed to the CC. The problem is formulated as a non-convex
quadratically constrained quadratic program (QCQP), which
is, however, NP-hard. Hence, a heuristic algorithm based on
a semi-definite relaxation together with a novel randomization
method is proposed. The proposed heuristic algorithm is able
to significantly lower a total system cost (i.e., weighted sum of
total energy consumption, execution delay and costs to offload
and process all applications) when compared to the situation
if the computation is done always solely at the UE (roughly
up to 70%) or always at the MEC/CC (approximately up to
58%).

The extension of [86] from the single-UE to the multi-
UEs scenario is presented in [87]. Since the multiple UEs
are assumed to be connected to the same computing node
(e.g., eNB), the offloading decision is done jointly with the
allocation of computing and communication resources to all
UEs. Analogously to [86], the proposal in [87] outperforms
the case when computation is done always by the UE (system
cost decreased by up to 45%) and strategy if computation is
always offloaded to the MEC/CC (system cost decreased by
up to 50%). Still, it would be useful to show the results for
more realistic scenario with multiple computing eNBs, where
interference among the UEs attached to different eNBs would
play an important role in the offloading decision. Moreover,
the overall complexity of the proposed solution is O(N6) per
one iteration, which could be too high for a high number of
UEs (N ) connected to the eNB.

B. Partial offloading

This subsection focuses on the works dealing with the
partial offloading. We classify the research on works focused
on minimization of the energy consumption at the UE while
predefined delay constraint is satisfied (Section V-B1) and
works finding a proper trade-off between both the energy
consumption and the execution delay (Section V-B2).

1) Minimization of energy consumption while satisfying
execution delay constraint: This section focuses on the works
aiming on minimization of the energy consumption while
satisfying maximum allowable delay, similarly as in Sec-
tion V-A2. In [88], the authors consider the application divided
into a non-offloadable part and N offloadable parts as shown
in Fig. 9b. The main objective of the paper is to decide,
which offloadable parts should be offloaded to the MEC.
The authors propose an optimal adaptive algorithm based on
a combinatorial optimization method with complexity up to
O(2N ). To decrease the complexity of the optimal algorithm,
also a sub-optimal algorithm is proposed reducing complexity
to O(N). The optimal algorithm is able to achieve up to
48% energy savings while the sub-optimal one performs only
slightly worse (up to 47% energy savings). Moreover, it is
shown that increasing SINR between the UE and the serving
eNBs leads to more prominent energy savings.

The minimization of the energy consumption while satis-
fying the delay constrains of the whole application is also
the main objective of [72]. Contrary to [88] the application
in [72] is supposed to be composed of several atomic parts



1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2017.2682318, IEEE
Communications Surveys & Tutorials

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. XX, NO. XX, XX

dependable on each other, i.e., some parts may be processed
only after execution of other parts as shown in Fig. 10 in
Section IV. The authors formulate the offloading problem as
0− 1 programming model, where 0 stands for the application
offloading and 1 represents the local computation at the UE.
Nevertheless, the optimal solution is of a high complexity
as there exists 2N possible solutions to this problem (i.e.,
O(2NN2)). Hence, the heuristic algorithm exploiting Binary
Particle Swarm Optimizer (BPSO) [89] is proposed to reduce
the complexity to O(G.K.N2), where G is the number of
iterations, and K is the number of particles. The BPSO
algorithm is able to achieve practically the same results as
the high complex optimal solution in terms of the energy
consumption. Moreover, the partial offloading results in more
significant energy savings with respect to the full offloading
(up to 25% energy savings at the UE).

A drawback of both above papers focusing in detail on the
partial computation offloading is the assumption of only single
UE in the system. Hence, in [90], the authors address the
partial offloading decision problem for the multi-UEs scenario.
With respect to [72][88], the application to be offloaded does
not contain any non-offloadable parts and, in some extreme
cases, the whole application may be offloaded if profitable
(i.e., the application is structured as illustrated in 9a). The
UEs are assumed to be able to determine whether to partition
the application and how many parts should be offloaded to
the MEC. The problem is formulated as a nonlinear constraint
problem of a high complexity. As a consequence, it is sim-
plified to the problem solvable by linear programming and
resulting in the complexity O(N) (N is the number of UEs
performing the offloading). If the optimal solution applying
exhaustive search is used, 40% energy savings are achieved
when compared to the scenario with no offloading. In case of
the heuristic low complex algorithm, 30% savings are observed
for the UEs. The disadvantage of the proposal is that it assumes
the UEs in the system have the same channel quality and
all of them are of the same computing capabilities. These
assumptions, however, are not realistic for the real network.

A multi-UEs scenario is also assumed in [91], where the
authors assume TDMA based system where time is divided
into slots with duration of T seconds. During each slot, the
UEs may offload a part of their data to the MEC according to
their channel quality, local computing energy consumption,
and fairness among the UEs. In this regard, an optimal
resource allocation policy is defined giving higher priority to
those UEs that are not able to meet the application latency
constraints if the computation would be done locally. After
that, the optimal resource allocation policy with threshold
based structure is proposed. In other words, the optimal policy
makes a binary offloading decision for each UE. If the UE
has a priority higher than a given threshold, the UE performs
full computation offloading to the MEC. Contrary, if the
UE has a lower priority than the threshold, it offloads only
minimum amount of computation to satisfy the application
latency constraints. Since the optimal joint allocation of com-
munication and computation resources is of a high complexity,
the authors also propose a sub-optimal allocation algorithm,
which decouples communication and computation resource

allocation. The simulation results indicate this simplification
leads to negligibly higher total energy consumption of the UE
when compared to the optimal allocation. The paper is further
extended in [92], where the authors show that OFDMA access
enables roughly ten times higher energy savings achieved by
the UEs comparing to TDMA system due to higher granularity
of radio resources.

In all above-mentioned papers on partial offloading, the min-
imization of UE’s energy consumption depends on the quality
of radio communication channel and transmission power of
the UE. Contrary, in [93], the minimization of energy con-
sumption while satisfying execution delay of the application
is accomplished through DVS technique. In this respect, the
authors propose an energy-optimal partial offloading scheme
that forces the UE adapt its computing power depending on
maximal allowed latency of the application (LMAX ). In other
words, the objective of the proposed scheme is to guarantee
that the actual latency of the application is always equal
to LMAX . As a consequence, the energy consumption is
minimized while perceived QoS by the users is not negatively
affected.

2) Trade-off between energy consumption and execution
delay: A trade-off analysis between the energy consumption
and the execution delay for the partial offloading decision is
delivered in [94]. Similarly as in [90], the application to be
offloaded contains only offloadable parts and in extreme case,
the full offloading may occur (as explained in Section V-B).
The offloading decision considers the following parameters:
1) total number of bits to be processed, 2) computational
capabilities of the UE and the MEC, 3) channel state between
the UE and the serving SCeNB that provides access to the
MEC, and 4) energy consumption of the UE. The computation
offloading decision is formulated as a joint optimization of
communication and computation resources allocation. The
simulation results indicate that the energy consumption at
the UE decreases with increasing total execution time. This
decrease, however, is notable only for small execution time
duration. For a larger execution time, the gain in the energy
savings is inconsequential. Moreover, the authors show the
offloading is not profitable if the communication channel is
of a low quality since a high amount of energy is spent to
offload the application. In such situation, the whole application
is preferred to be processed locally at the UE. With an
intermediate channel quality, a part of the computation is
offloaded to the MEC as this results in energy savings. Finally,
if the channel is of a high quality, the full offloading is
preferred since the energy consumption for data transmission
is low while the savings accomplished by the computation
offloading are high.

The study in [95] provides more in-depth theoretical anal-
ysis on trade-off between the energy consumption and the
latency of the offloaded applications preliminarily handled
in [94]. Moreover, the authors further demonstrate that a
probability of the computation offloading is higher for good
channel quality. With higher number of antennas (4x2 MIMO
and 4x4 MIMO is assumed), the offloading is done more often
and the energy savings at the UE are more significant when
compared to SISO or MISO (up to 97% reduction of energy
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TABLE III: The comparison of individual papers addressing computation offloading decisions.

Offloading
type

Objective Proposed solution No. of UE
offloading

Evaluation
method

Reduction of
D/EUE wrt local
computing

Complexity
of proposed
algorithm

[74] Full 1) Minimize D One-dimensional search algorithm
finding the optimal offloading pol-
icy

Single UE Simulations Up to 80% reduc-
tion of D

N/A

[75] Full 1) Minimize D, 2)
Minimize application
failure

Lyapunov optimization-based dy-
namic computation offloading

Single UE Theoretical
verifications,
simulations

Up to 64% reduction
of D

N/A

[78] Full 1) Minimize EUE , 2)
Satisfy D constraint

Online learning allocation strategy,
offline pre-calculated strategy

Single UE Simulations Up to 78% reduction
of EUE

N/A

[79] Full 1) Minimize EUE , 2)
Satisfy D constraint

Deterministic and random offline
strategies

Single UE Simulations Up to 78% reduction
of EUE

N/A

[80] Full 1) Minimize EUE , 2)
Satisfy D constraint

Deterministic offline strategy, de-
terministic online strategy based on
post-decision learning framework

Multi UEs Simulations N/A N/A

[81] Full 1) Minimize EUE , 2)
Satisfy D constraint

Joint allocation of communication
and computation resources

Multi UEs Simulations N/A N/A

[82] Full 1) Minimize EUE , 2)
Satisfy D constraint

Distributed iterative algorithm ex-
ploiting Successive Convex Ap-
proximation (SCA)

Multi UEs Simulations N/A N/A

[83] Full 1) Minimize EUE , 2)
Satisfy D constraint

Distributed iterative algorithm ex-
ploiting Successive Convex Ap-
proximation (SCA)

Multi UEs Simulations N/A N/A

[84] Full 1) Minimize EUE , 2)
Satisfy D constraint

Energy-efficient computation of-
floading (EECO) algorithm

Multi UEs Simulations Up to 15% reduction
of EUE

O(max(I2+
N, IK+N))

[85] Full 1) Trade-off between
EUE and D

Computation offloading game Multi UEs Analytical
evaluations,
simulations

Up to 40% reduction
of EUE

N/A

[86] Full 1) Trade-off between
EUE and D

Heuristic algorithm based on
semidefinite relaxation and
randomization mapping method

Single UE Simulations Up to 70% reduction
of total cost

N/A

[87] Full 1) Trade-off between
EUE and D

Heuristic algorithm based on
semidefinite relaxation and
randomization mapping method

Multi UEs Simulations Up to 45% reduction
of total cost

O(N6) per
iteration

[88] Partial 1) Minimize EUE , 2)
Satisfy D constraint

Adaptive algorithm based on com-
binatorial optimization method

Single UE Simulations Up to 47% reduction
of EUE

O(N)

[72] Partial 1) Minimize EUE , 2)
Satisfy D constraint

Algorithm exploiting binary parti-
cle swarm optimizer

Single UE Simulations Up to 25% reduction
of EUE

O(G.K.N2)

[90] Partial 1) Minimize EUE , 2)
Satisfy D constraint

Application and delay based re-
source allocation scheme

Multi UEs Simulations Up to 40% reduction
of EUE

O(N)

[91] Partial 1) Minimize EUE , 2)
Satisfy D constraint

Optimal resource allocation policy
with threshold based structure for
TDMA system

Multi UEs Simulations N/A N/A

[92] Partial 1) Minimize EUE , 2)
Satisfy D constraint

Optimal resource allocation policy
with threshold based structure for
TDMA and OFDMA system

Multi UEs Simulations N/A O(K +N)

[93] Partial 1) Minimize EUE , 2)
Satisfy D constraint

Adapting computing power of the
UE by means of DVS to achieve
maximum allowed latency

Single UE Simulations N/A N/A

[94] Partial 1) Trade-off between
EUE and D

Joint allocation of communication
and computational resources

Single UE Simulations N/A N/A

[95] Partial 1) Trade-off between
EUE and D

Iterative algorithm finding the op-
timal value of the number of bits
sent in uplink

Single UE Analytical
evaluations,
simulations

Up to 97% reduction
of EUE (SINR 45
dB, 4x4 MIMO)

N/A

[96] Partial 1) Trade-off between
EUE and D

Joint allocation of communication
and computational resources

Multi UEs Simulations Up to 90% reduction
of EUE

N/A

[97] Partial 1) Trade-off between
EUE and D

Lyapunov optimization-based dy-
namic computation offloading

Multi UEs Simulations Up to 90% reduction
of EUE , up to 98%
reduction of D

N/A

consumption for 4x4 MIMO antenna configuration). Note that
the same conclusion is also reached, e.g., in [81][82].

The main drawback in [94][95] is that these papers consider
only the single-UE scenario. A trade-of analysis between the
energy consumption at the UE and the execution delay for the
multi-UEs scenario is delivered in [96]. In case of the multi-
UEs scenario, the whole joint optimization process proposed
in [95] has to be further modified since both communication
and computation resources provided by the MEC are shared

among multiple UEs. In the paper, it is proven that with more
UEs in the system, it takes more time to offload the application
and it also lasts longer to process the application in the MEC.
The reason for this phenomenon is quite obvious since less
radio and computational resources remains for each UE. Still,
up to 90% of energy savings may be accomplished in multi-
UE scenario.

A trade-off between the power consumption and the execu-
tion delay for the multi-UEs scenario is also tackled in [97].
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The authors formulate a power consumption minimization
problem with application buffer stability constraints. In this re-
gard, the online algorithm based on Lyapunov optimization is
proposed to decide on optimal CPUs frequency for those UEs
performing the local execution and to allocate transmission
power and bandwidth to the UEs offloading the application
to the MEC. The proposed algorithm is able to control the
power consumption and the execution delay depending on the
selected priority. The paper also demonstrates that the use of
the MEC for the computation offloading is able to bring up to
roughly 90% reduction in the power consumption while the
execution delay is reduced approximately by 98%.

C. Summary of works focusing on computation offloading
decision

A comparison of individual computation offloading strate-
gies is illustrated in Table III. The majority of computation
offloading decision algorithms aims to minimize the energy
consumption at the UE (EUE) while satisfying the execu-
tion delay (D) acceptable by the offloaded application or
to find/analyse a trade-off between these two metrics. The
papers indicate up to 90% energy savings achievable by the
computation offloading to the MEC and execution delay may
be reduced even up to 98%. Besides, all the papers evaluate
the proposed solutions mostly by means of simulation (only
several studies perform analytical evaluations).

VI. ALLOCATION OF COMPUTING RESOURCES

If a decision on the full or partial offloading of an applica-
tion to the MEC is taken (as discussed in previous section), a
proper allocation of the computation resources has to be done.
Similarly as in case of the computation offloading decision, the
selection of computation placement is influenced by the ability
of the offloaded application to be parallelized/partitioned.
If the parallelization/partitioning of the application is not
possible, only one physical node may be allocated for the
computing since the application cannot be split into several
parts (in Fig. 14, the UE1 offloads whole application to the
eNB as this application cannot be partitioned). In the opposite
case, the offloaded application may be processed by resources
distributed over several computing nodes (in Fig. 14, the
application offloaded by the UE2 is partitioned and processed
by all three eNBs).

This section surveys the papers addressing the problem
of a proper allocation of the computing resources for the
applications that are going to be offloaded to the MEC (or
in some cases to the CC, if the MEC computing resources
are not sufficient). We categorize the research in this area into
papers focusing on allocation of the computation resources at
1) a single computing node (Section VI-A) and 2) multiple
computing nodes (Section VI-B).

A. Allocation of computation resources at a single node

The maximization of the amount of the applications served
by the MEC while satisfying the delay requirements of the
offloaded applications is the main objective in [98]. The

Fig. 14: An example of allocation of computing resources
within the MEC.

decision where the individual applications should be placed
depends on the applications priorities (derived from the ap-
plication’s delay requirements, i.e., the application with a low
delay requirements has higher priority) and availability of the
computing resources at the MEC. The basic principle for the
allocation of computation resources is depicted in Fig. 15.
The offloaded applications are firstly delivered to the local
scheduler within the MEC. The scheduler checks if there is
a computing node with sufficient computation resources. If
there is a computing node with enough available resources,
the VM is allocated at the node. Then the application is
processed at this MEC node, and finally sent back to the UE
(see Fig. 15). However, if the computation power provided
by the MEC server is not sufficient, the scheduler delegates
the application to the distant CC. In order to maximize the
amount of applications processed in the MEC while satisfying
their delay requirements, the authors propose a priority based
cooperation policy, which defines several buffer thresholds for
each priority level. Hence, if the buffer is full, the applications
are sent to the CC. The optimal size of the buffer thresholds is
found by means of low-complexity recursive algorithm. The
proposed cooperation policy is able to increase the probability
of the application completion within the tolerated delay by
25%.

When compared to the previous paper, the general objective
of [99] is to minimize not only the execution delay but also
the power consumption at the MEC. The paper considers a
hot spot area densely populated by the UEs, which are able
to access several MEC servers through nearby eNBs. To that

Fig. 15: Allocation of computation resources according to [98].
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end, an optimal policy is proposed using equivalent discrete
MDP framework. However, this method results in a high
communication overhead and high computational complexity
with increasing number of the MEC servers. Hence, this
problem is overcome by developing an application assignment
index policy. In this respect, each eNB calculates its own index
policy according to the state of its computing resources. Then,
this index policy is broadcasted by all eNBs and the UE is able
to select the most suitable MEC server in order to minimize
both execution delay and power consumption. According to
the results, the index policy is in the worst case by 7% more
costly than optimal policy in terms of system cost (note that
system cost represents weighted execution delay and power
consumptions of the MEC).

The minimization of the execution delay of the offloaded
application is also the main goal in [100]. Nonetheless, with
respect to [98][99], the other objectives are to minimize
both communication and computing resource overloading and
the VM migration cost (note that in [100], the computing
nodes are represented by the SCeNBs and the VM migration
may be initiated due to the SCeNBs shutdown). The whole
problem is formulated as the VM allocation at the SCeNB and
solved by means of MDP. An example of the VM allocation
according to [100] is shown in Fig. 16, where the VM for the
UE1 is allocated at the serving SCeNB1 while the UE2 has
allocated the VM at the neighbouring SCeNB3. The SCeNB3
is preferred because of a high quality backhaul resulting in a
low transmission delay of the offloaded data. The simulations
show that with higher VM migration cost, the VM is preferred
to be allocated at the serving SCeNB (i.e., the SCeNB closest
to the UE) if this SCeNB has enough computation power.

The main disadvantage of all above-mentioned approaches
is that these do not consider more computing nodes within
the MEC for single application in order to further decrease its
execution delay.

B. Allocation of computation resources at multiple nodes
(federated clouds)

When compared to the previous section, the allocation of
computation resources at multiple computing nodes is con-
sidered here. The papers are split into subsections according

Fig. 16: An example of the VM allocation at single computing
SCeNB according to [100].

Fig. 17: An example of allocation of computation resources
for individual UEs according to [101].

to the main objective: 1) minimize execution delay and/or
power consumption of computing nodes (Section VI-B1) and
2) balance both communication and computing loads (Sec-
tion VI-B1).

1) Minimization of execution delay and/or power consump-
tion of computing nodes: The minimization of the execution
delay by allocation of computing resources provided by the
cluster of SCeNBs while avoiding to use the CC is proposed in
[101]. The cluster formation is done by means of a cooperative
game approach, where monetary incentives are given to the
SCeNBs if they perform the computation for the UEs attached
to other SCeNBs. The coalition among the SCeNBs is formed
for several time slots and then new coalitions may be created.
The allocation of computation resources is done as shown in
Fig. 17. Firstly, the serving SCeNB tries to serve their UEs on
its own since this results in the shortest communication delay
(e.g., in Fig. 17 SCeNB1 allocates the computation resources
to the UE1 and the UE2, etc.). Only if the SCeNB is not
able to process the application on its own, it is forwarded to
all SCeNBs in the same cluster (in Fig. 17, the computation
for the UE3 is done at the SCeNB2 and the SCeNB3). The
numerical results show that the proposed scheme is able to
reduce the execution delay by up to 50% when compared
to the computation only at the serving SCeNB and by up
to 25% comparing to the scenario when all SCeNBs in
the system participate in the computation. Unfortunately, the
proposed approach does not address a problem of forming new
coalitions and its impact on currently processed applications.

The selection of computing nodes can significantly influence
not only the execution delay, as considered in [101], but also
the power consumption of the computing nodes. Hence, the
main objective of [102] is to analyze an impact of the cluster
size (i.e., the amount of the SCeNBs performing computing)
on both execution latency of the offloaded application and
the power consumption of the SCeNBs. The analysis is done
for different backhaul topologies (ring, tree, full mesh) and
technologies (fiber, microwave, LTE). The authors demonstrate
that full mesh topology combined with fiber or microwave
connection is the most profitable in terms of execution latency
(up to 90% execution delay reduction). Contrary, a fiber back-
haul in ring topology results in the lowest power consumption.
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Moreover, the paper shows that an increasing number of the
computing SCeNBs does not always shorten execution delay.
Quite the opposite, if a lot of SCeNBs process the offloading
applications and the transmission delay becomes longer than
the computing delay at the SCeNBs, the execution delay may
be increased instead. Besides, with an increasing number of
the computing SCeNBs, power consumption increases as well.
Consequently, a proper cluster formation and the SCeNBs
selection play a crucial part in system performance.

The problem to find an optimal formation of the clusters of
SCeNBs for computation taking into account both execution
delay and power consumption of the computing nodes is ad-
dressed in [103]. The paper proposes three different clustering
strategies. The first clustering strategy selects the SCeNBs in
order to minimize execution delay. Since all SCeNBs in the
system model are assumed to be one hop away (i.e., full mesh
topology is considered), basically all SCeNBs are included in
the computation resulting in up to 22% reduction of execution
delay. This is due to the fact that the computation gain
(and, thus, increase in the offloaded application processing)
is far greater than the transmission delay. The objective of
the second clustering strategy is to minimize overall power
consumption of the cluster. In this case, only the serving
SCeNB is preferred to compute, thus, any computation at
the neighbouring SCeNBs is suppressed to minimize power
consumption of the SCeNBs (up to 61% reduction of power
consumption is observed). This, however, increases overall
latency and high variations of the computation load. The last
clustering strategy aims to minimize the power consumption
of each SCeNB in the cluster, since the power consumptions
of the individual SCeNBs is highly imbalanced in the second
strategy.

While in [103] the optimal clustering of the SCeNBs is
done only for single UE, the multi UEs scenario is assumed
in [104]. When compared to the previous paper, whenever the
UE is about to offload data for the computation, the computing
cluster is assigned to it. Consequently, each UE has assigned
different cluster size depending on the application and the
UE’s requirements. The core idea of the proposal is to jointly
compute clusters for all active users’ requests simultaneously
to being able efficiently distribute computation and communi-
cation resources among the UEs and to achieve higher QoE.
The main objective is to minimize the power consumption of
the clusters while guaranteeing required execution delay for
each UE. The joint clusters optimization is able to significantly
outperform the successive cluster optimization (allocation of
the clusters are done subsequently for each UE), the static
clustering (equal load distribution among SCeNBs) and no
clustering (computation is done only by the serving SCeNB)
in terms of the users’ satisfaction ratio (up to 95% of UEs is
satisfied). On the other hand, the average power consumption
is significantly higher when compared to ”no clustering” and
”successive clusters optimization” scenarios.

Similar as in [104], the multi-UE cluster allocation is
assumed in [105], but the cluster formation is done jointly with
the UEs scheduling. The proposed resource allocation process
is split into two steps similarly as proposed in [101]. In the
first step, labeled as local computational resource allocation,

each SCeNB allocates its computational resources to their
own UEs according to specific scheduling rules, such as
application latency constraint, computation load or minimum
required computational capacity. In the second step, labelled as
establishment of computing clusters, the computation clusters
are created for each UE that cannot be served by its serving
SCeNB. The authors propose three algorithm realizations
differing in applications prioritization (e.g., earliest deadline
first or according to computation size of application) and the
objective (minimization of power consumption or execution
latency similarly as, e.g., in [104]). The simulations illustrate
that there could be found the algorithm realization resulting
in the users satisfaction ratio above 95% while keeping a
moderate power consumption of all computing nodes.

2) Balancing of communication and computation load: In
the previous section, the allocation of computing resources
is done solely with purpose to minimize the execution delay
and/or the power consumption of the computing nodes. This
could, however, result in unequal load distribution among
individual computing nodes and backhaul overloading. The
balancing of communication and computation load of the
SCeNBs while satisfying the delay requirement of the of-
floaded application is addressed in [106]. To this end, an
Application Considering Algorithm (ACA) selecting suitable
SCeNBs according to the current computation and commu-
nication load of the SCeNBs is proposed. The ACA exploits
knowledge of the offloaded application’s requirements (i.e.,
the number of bytes to be transferred and the maximum
latency acceptable by the application/user). The selection of
the SCeNBs for the computation is done in a static way
prior to the offloading to avoid expensive VMs migration.
The performance evaluation is done for two backhauls, low
throughput ADSL and high quality gigabit passive optical
network (GPON). The proposed ACA algorithm is able to
satisfy 100% of the UEs as long as number of offloaded tasks
per second is up to 6. Moreover, the paper shows that tasks
parallelization helps to better balance computation load.

Fig. 18: An example of application and physical graph accord-
ing to [107] (FD - Face detection, IPFE - Image processing
and feature extraction, FR - Face recognition, D - Database).
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TABLE IV: The comparison of individual papers addressing allocation of computation resources for application/data already
decided to be offloaded.

No. of com-
puting nodes
for each ap-
plication

Objective Proposed solution Computing
nodes

Evaluation
method

Results

[98] Single node 1) Maximize the amount of
served applications, 2) Sat-
isfy D constraint

Priority based cooperation policy MEC servers
(e.g., at the eNB
or agg. point), CC

Simulations 25% reduction of D
wrt offloading only
to the MEC

[99] Single node 1) Minimize D, 2) Mini-
mize EC

Optimal online application assign-
ment policy using equivalent dis-
crete MDP framework

MEC servers
(e.g., at the eNB
or agg. point), CC

Simulations N/A

[100] Single node 1) Minimize D, 2) Mini-
mize overloading of com-
munication and computing
resources, 3) Minimize VM
migration cost

Optimal allocation policy obtained
by solving MDP using linear pro-
graming reformulation

SCeNBs Simulations N/A

[101] Multiple nodes 1) Minimize D, 2) Avoid
to use the CC due to high
delay

Formation of collaborative coali-
tions by giving monetary incentives
to the SCeNBs

SCeNBs Simulations Up to 50% reduction
of D wrt single com-
puting SCeNB

[102] Multiple nodes 1) Analyze the impact of
different network topologies
and technologies on execu-
tion delay and power con-
sumption

N/A SCeNBs Simulations Up to 90% reduction
of D wrt single com-
puting SCeNB

[103] Multiple nodes 1) Minimize D, 2) Mini-
mize EC

Three clustering strategies mini-
mizing delay, power consumption
of the cluster and power consump-
tion of the SCs

SCeNBs Simulations 22% reduction of
D, 61% reduction of
EC

[104] Multiple nodes 1) Minimize D, 2) Mini-
mize EC

Joint cluster formation for all active
users requests simultaneously

SCeNBs Simulations Up to 95% of UE
are satisfied (for
max. 5 UEs)

[105] Multiple nodes 1) Minimize D, 2) Mini-
mize EC

Joint cluster formation for all ac-
tive users requests simultaneously
together with users scheduling

SCeNBs Simulations Up to 95% of UE
are satisfied (for
max. 5 UEs)

[106] Multiple nodes 1) Balance communication
and computation load of
computing nodes, 2) Satisfy
execution delay requirement

ACA algorithm assuming jointly
computation and communication
loads

SCeNBs Simulations 100% satisfaction
ratio for up to 6
offloaded tasks/s

[107] Multiple nodes 1) Balance communication
and computation load of
computing nodes, 2) Mini-
mize resource utilization

Online approximation algorithms
with polynomial-logarithmic (poly-
log) competitive ratio for tree ap-
plication graph placement

UE, eNB, CC Simulations Reduction of
resource utilization
up to 10%

The main objective to balance the load (both communi-
cation and computation) among physical computing nodes
and, at the same time, to minimize the resource utilization
of each physical computing node (i.e., reducing sum resource
utilization) is also considered in [107]. The overall problem is
formulated as a placement of application graph onto a physical
graph. The former represents the application where nodes in
graph correspond to individual components of the application
and edges to the communication requirements between them.
The latter represents physical computing system, where the
nodes in graph are individual computing devices and edges
stands for the capacity of the communication links between
them (see the example of application and physical graphs
in Fig. 18 for the face recognition application). The authors
firstly propose the algorithm finding the optimal solution for
the linear application graph and, then, more general online
approximation algorithms. The numerical results demonstrate
that the proposed algorithm is able to outperform two heuristic
approaches in terms of resource utilization by roughly 10%.

C. Summary of works dealing with allocation of computing
resources

The comparison of individual methods addressing allocation
of the computation resources within the MEC is shown in
Table IV. The main objective of the studies dealing with
the allocation of computation resources is to minimize the
execution delay of the offloaded application (D). In other
words the aim is to ensure QoS to the UEs in order to fully
exploit proximity of the MEC with respect to the computing
in faraway CC. Moreover, several studies also focus on mini-
mization of the energy consumption of computing nodes (EC).
In addition, some limited effort has been focused on balancing
of computing and communication load to more easily satisfy
the requirements on execution delay and/or to minimize overall
resources utilization.

A common drawback of all proposed solutions is that only
simulations are provided to demonstrate proposed solutions
for allocation of MEC computing resources. Moreover, all
papers disregard mobility of the UEs. Of course, if the UEs
are fixed, individual proposal yield a satisfactory execution
delay and/or power consumption at the computing nodes.
Nevertheless, if the UE moves far away from the computing
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nodes, this could result in significant QoS degradation due to
long transmission latency and extensive users dissatisfaction.
This issue is addressed in the subsequent section targeting
mobility management for the MEC.

VII. MOBILITY MANAGEMENT FOR MEC

In the conventional mobile cellular networks, a mobility of
users is enabled by handover procedure when the UE changes
the serving eNB/SCeNB as it roams throughout the network
to guarantee the service continuity and QoS. Analogously,
if the UE offloads computation to the MEC, it is important
to ensure the service continuity. In fact, there are several
options how to cope with the mobility of UEs. The first option,
applicable only for the UEs with a low mobility (e.g. within
a room), is to adapt transmission power of the eNB/SCeNB
during the time when the offloaded application is processed
by the MEC (Section VII-A). If the UE performs handover
to the new serving eNB/SCeNB despite of the power control,
the service continuity may be guarantee either by the VM
migration (i.e., the process during which the VM run at
the current computing node(s) is migrated to another, more
suitable, computing node(s) as discussed in Section VII-B) or
by selection of a new communication path between the UE
and the computing node (Section VII-C).

A. Power control

In case when the UEs’ mobility is low and limited, e.g.,
when the UEs are slowly moving inside a building, a proper
setting of the transmission power of the serving and/or neigh-
boring SCeNBs can help to guarantee QoS. This is considered
in [108], where the authors propose a cloud-aware power
control (CaPC) algorithm helping to manage the offloading
of real-time applications with strict delay requirements. The
main objective of the CaPC is to maximize the amount of
the offloaded applications processed by the MEC with a given
latency constrain. This is achieved by an adaptation of the
transmission power of the SCeNBs so that the handover to a
new SCeNB is avoided if possible (see the basic principle
in Fig.19 where the moving UE remains connected to the
same SCeNB as its transmission power is increased). The
CaPC is composed of coarse and fine settings of the SCeNBs
transmission power. The purpose of the coarse setting is to
find an optimal default transmission power Pt,def , which is
applied if all of the UEs attached to the SCeNB are idle.
Setting of the Pt,def depends on the power level received
by the serving SCeNB from the most interfering neighboring
SCeNB and the interference generated by the eNBs. The fine
setting consists in a short-term adaptation of the SCeNB’s
transmission power when the UE would not be able to receive
the offloaded application from the cloud due to low SINR.
If the CaPC is utilized, up to 95% applications computed at
the SCeNBSs are successfully delivered back to the UE with
satisfying delay. Contrary, a conventional, non-cloud-aware,
power control is able to successfully deliver only roughly 80%
of offloaded applications.

The main disadvantage of the CaPC presented in [109] is
that the time when the fine adjustment of the transmission

Fig. 19: Principle of CaPC according to [108][109].

power is triggered (∆t) is the same for all SCeNBs and UEs
independently on the channel quality (i.e., SINR). As a con-
sequence, the CaPC may be triggered too late when sufficient
SINR cannot be guaranteed in due time to successfully deliver
the offloaded application back to the UE. This problem is
addressed in [109], where the ∆t is set individually for each
UEs depending on its current channel quality. The proposed
algorithm finds ∆t by iterative process when ∆t is adapted
after each application is successfully delivered back to the UE.
This way, the amount of successfully delivered applications is
increased up to 98%, as demonstrated by simulations.

B. VM migration

If the UEs mobility is not limited, as considered in Sec-
tion VII-A, and power control is no longer sufficient to keep
the UE at the same serving eNB/SCeNB, a possibility to
initiate the VM migration should be contemplated in order to
guarantee the service continuity and QoS requirements. On one
hand, the VM migration has its cost (CostM ) representing the
time required for the VM migration and backhaul resources
spent by transmission of the VM(s) between the computing
nodes. On the other hand, there is a gain if the VM migration is
initiated (GainM ) since the UE can experience lower latency
(data is processed in UE’s vicinity) and backhaul resources do
not have to be allocated for transmission of the computation
results back to the UE.

A preliminary analysis how the VM migration influences
performance of the UE is tackled in [110]. The authors
describe analytical model based on Markov chains. Without
the VM migration, a probability that the UE is connected to
the optimal MEC decreases with increasing number of hops
between the UE and the eNB, where the service is initially
placed. This also results in increasing delay. Contrary, the
connection of the UE to the optimal MEC server results in
the lowest delay but at the high cost of the migration. The
reason for this phenomenon is that the VM migration should
be ideally initiated after each handover performed by the UE
to keep minimum delay.

While the previous paper is more general and focused on
preliminary analysis regarding the VM migration, the main
objective of [111] is to design a proper decision policy
determining whether to initiate the VM migration or not. As
discussed above, there is a trade-off between the migration
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Fig. 20: VM migration principle according to [111].

cost (CostM ) and migration gain (GainM ). The authors
formulate the VM migration policy as a Continuous Time
MDP (CTMDP) and they try to find an optimal threshold
policy when the VM migration is initiated. Consequently, after
each handover to the new eNB, the optimal threshold policy
decides whether the VM migration should be initiated or not.
An example of this principle is shown in Fig. 20, where
the UE exploiting the MEC1 moves from the eNB1 to the
eNBn. While the conventional radio handover is performed
whenever the UE crosses cell boundaries, the VM migration
is initiated after handover to the eNBn is performed since
CostM < GainM . Simulations show, that the proposed
optimal policy always achieves the maximum expected gain
if compared to never migrate strategy (i.e., the computation is
located still at the same MEC) and the scheme when the VM
migration is performed after a specific number of handovers
(10 handovers is set in the paper).

A proper trade-off between VM migration cost (CostM )
and VM migration gain (GainM ) is also studied in [112].
The paper proposes a Profit Maximization Avatar Placement
(PRIMAL) strategy deciding whether the VM should be
migrated or not. Since the PRIMAL problem is NP-hard,
the authors use Mixed-Integer Quadratic Programming tool
to find the heuristic solution. The proposed solution is able
to significantly reduce execution delay when compared to the
situation with no migration (roughly by 90%) while reducing
the migration cost approximately by 40%. When compared
to [111], the authors also show the influence of α parameter
weighing CostM and GainM . Basically, with increasing α,
the migration cost is decreasing (i.e., migration is not done so
frequently), but at the cost of higher execution delay.

An optimal threshold policy for the VM migration is also
considered in [113]. The problem is again formulated as the
MDP and the VM migration is initiated always if the state of
the UE is bounded by a particular set of thresholds. The state
of the UE is defined as the number of hops between the eNB to
which the UE is connected and the location of the MEC server
where the computing service is running (in the paper labelled
as the offset). The main objective of the paper is to minimize
the overall sum cost by the optimal VM migration decision
(i.e., the VM migration is performed if CostM < GainM
as explained earlier). The authors proof the existence of the

optimal threshold policy and propose an iterative algorithm in
order to find the optimal thresholds for the VM migration. The
time complexity of the algorithm is O(|M |N), where M and
N is the maximum negative and positive offset, respectively.
The performed results proof the optimal threshold policy is
able to always outperform ”never migrate” or ”always migrate”
strategies in terms of the sum cost.

The main drawback of [111][113] is that these assume
simple 1D mobility model. More general setting for the VM
migration is contemplated in [114], where 2D mobility and
real mobility traces are assumed. The authors formulate a
sequential decision making problem for the VM migration
using MDP and define algorithm for finding optimal policy
with the complexity O(N3), where N is the number of states
(note that the state is defined as the number of hops between
the eNB to which the UE is connected and the location of
the MEC server analogously to [113]). Since the proposed
optimal VM migration strategy is too complex, the authors
propose an approximation of the underlying state space by
defining the space as a distance between the UE and the
MEC server where the service is running. In this case, the
time complexity is reduced to O(N2). As demonstrated by
the numerical evaluations, the proposed migration strategy is
able to decrease sum cost by roughly 35% compared to both
never and always migrate strategy.

The VM migration process may be further improved by a
mobility prediction as demonstrated in [115]. The proposed
scheme is able to: 1) estimate in advance a throughput that
user can receive from individual MEC servers as it roams
throughout the network, 2) estimate time windows when the
user perform handover, and 3) and VM migration manage-
ment scheme selecting the optimal MEC servers according to
offered throughput. The simulation results demonstrate that
the proposed scheme is able to decrease latency by 35%
with respect to scheme proposed in [111]. Nonetheless, a
disadvantage of the proposal is that it requires huge amount
of information in order to predict the throughput. Moreover,
the paper does not consider the cost of migration itself.

In [116], the VM migration decision process is further
enhanced by the mechanism predicting future migration cost
with specified upper bound on a prediction error. The main
objective of the paper is, similarly as in [113][114], to
minimize the sum cost over a given time. First, the authors
propose an offline algorithm for finding the optimal placement
sequence for a specific look-ahead window size T , which
represents the time to which the cost prediction is done.
For the offline algorithm, an arrival and a departure of the
applications offloaded to the MEC are assumed to be exactly
known. The time complexity of the algorithm is O(M2T ),
where M stands for the number of MEC serves in the system.
The VM migration is strongly dependent on the size of T . If
T is too large, the future predicted values may be far away
from the actual values and, thus, the VM migration far from
the optimal. Contrary if T is too short, a long term effect of
the service placement is not considered. As a result, also a
binary search algorithm finding the optimal window size is
proposed in the paper. The proposed offline algorithm is able
to reduce cost by 25% (compared to never migrate strategy)
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and by 32% (compared to always migrate strategy). Although
the simulation results are demonstrated for the multi-UEs
scenario, the problem is formulated only for the single-UE.
Hence, the paper is further extended in [117] for the multi-
UEs offloading K applications to the MEC. Similarly as in
[116], the problem is solved by the offline algorithm with
complexity of O(MK2T ). Since the offline algorithm is of
high complexity and impractical for real systems, the paper
also propose an online approximation algorithm reducing the
complexity to O(M2KT ). The proposed online algorithm
outperforms never migrate and always migrate strategies by
approximately 32% and 50%, respectively.

So far, all the studies focusing on the VM migration do
not consider an impact on a workload scheduling, i.e., how
the VM migration would be affected by a load of individual
MEC servers. As suggested in [118], the problem of the VM
migration and scheduling of the MEC workloads should be
done jointly. Although the problem could be formulated as
a sequential decision making problem in the framework of
MDPs (like in above studies) it would suffer from several
drawbacks, such as, 1) extensive knowledge of the statistics of
the users mobility and request arrival process is impractical,
2) problem can is computationally challenging, and 3) any
change in the mobility and arrival statistics would require re-
computing the optimal solution. Hence, the main contribution
of [118] is a development of a new methodology overcoming
these drawbacks inspired by Lyapunov optimization frame-
work. The authors propose online control algorithm making
decision on where the application should be migrated so that
the overall transmission and reconfiguration costs are mini-
mized. The complexity of the algorithm is O(M !/(M −K)!),
where M is the number of MEC servers and K is the amount
of applications host by the MEC. By means of proposed
optimization framework, the reconfiguration cost is reduced
when compared to always migrate strategy (by 7%) and never
migrate strategy (by 26%).

While the main objective of the previous papers focusing
on the VM migration is to make a proper decision on whether
to migrate or not, the main aim of the authors in [119] is
to minimize the VM migration time when the migration is
about to be performed. This is accomplished by a compression
algorithm reducing the amount of transmission data during the
migration itself. On one hand, if the compression rate of the
algorithm is low, more data has to be transmitted, but the com-
pression itself is shorter in terms of time. On the other hand, a
higher compression rate results in a significant reduction of the
transmitted data during the VM migration, but the compression
takes significant amount of time. Hence, the paper proposes
a dynamic adaptation of the compression rate depending on
the current backhaul available bandwidth and the processing
load of the MEC. The paper presents extensive experiments
on real system showing that the dynamic adaptation during
the VM migration is able to cope with changing of available
bandwidth capacity.

A proper VM migration may not result only in an execution
delay reduction, but it can also increase throughput of the sys-
tem as demonstrated in [120]. The paper proposes a protocol
architecture for cloud access optimization (PACAO), which is

based on Locator/Identifier Separation Protocol (LISP) [121].
If the user is experiencing latency or jitter above maximum
tolerated threshold, the VM migration to a new MEC server is
initiated. The selection of the new MEC server, which is about
to host VM of the user is based on the required computing
power and availability of resources at the MEC servers. The
proposal is evaluated by means of both experiments on real
testbed and simulations. The results show that the system
throughput is increased by up to 40% when compared to the
case without VM migration.

C. Path selection and/or VM migration

The VM migration is not a convenient option when a huge
amount of data needs to be migrated among the computing
nodes and the whole process may take minutes or even hours
[119]. Even if the migration process lasts few seconds, real-
time applications cannot be offloaded to the MEC. Moreover,
the load imposed on backhaul links may be too significant.
In such cases, finding and optimizing new paths for delivery
of the computed data from the MEC are a more viable
option. This eventuality is considered in [122], where the path
selection algorithm for a delivery of the offloaded data from
the cluster of computing SCeNBs to the UE is proposed. The
main objective of the path selection algorithm is to minimize
transmission delay taking into account quality of both radio
and backhaul links. Moreover, the authors enable to enforce
handover to new serving SCeNB to minimize the transmission
delay. An example of the data delivery is shown in Fig. 21,
where three SCeNBs are computing the application offloaded
by the UE. The data processed by the serving SCeNB2 are
received by the UE directly while data from the SCeNB3 are
delivered to the UE through the CN and the serving SCeNB2.
Finally, the UE performs handover to the SCeNB1 and, then, it
receives results from the SCeNB3 directly via radio link. The
complexity of the proposed algorithm is O(mn), where m is
the number of UEs and n the amount of the SCeNBs in cluster.
The proposed algorithm is able to reduce transmission delay
by up to 9% with respect to a case when the UE receives all
data from the same serving SCeNB. In [123], the algorithm’s
complexity is further decreased to O(In), where I is the set
of SCeNBs with sufficient radio/backhaul link quality. It is

Fig. 21: An example of path selection algorithm proposed
in [122] (cRx and CB

x stands for capacity of radio links and
backhaul links, respectively).
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TABLE V: The comparison of individual papers focusing on mobility management in MEC.

Mobility
man.
method

Objective Proposed method Mobility
model

Evaluation
method

Results Algorithm
complex-
ity

[108] Power
control

1) Maximize the amount
of delivered requests
from the MEC, 2)
Guaranteeing latency
constraints

Adaptation of transmission
power of SCeNBs

2D limited
mobility (e.g.,
apartment)

Simulations Up to 95% offloaded
applications successfully
delivered

-

[109] Power
control

1) Maximize the amount
of delivered requests
from the MEC, 2)
Guaranteeing latency
constraints

Adaptation of transmission
power of SCeNBs, optimiza-
tion of power control trigger
time

2D limited
mobility (e.g.,
apartment)

Simulations Up to 98% offloaded
applications successfully
delivered

-

[110] VM mi-
gration

1) Define analytical
model for VM
migration, 2) Analyze
how VM migration
influences e2e delay

- 2D random
walk model

Analytical
model

N/A -

[111] VM mi-
gration

1) Maximize total ex-
pected reward

Formulation of an optimal
threshold decision policy ex-
ploiting MDP

1D random
walk

Simulations Always maximize total
expected reward wrt al-
ways/never migrate

-

[112] VM mi-
gration

1) Find a trade-off
between CostM and
GainM

Profit Maximization Avatar
Placement (PRIMAL) strat-
egy deciding whether VM
should be migrated or not

Random way
point model

Simulations Reducing execution de-
lay by 90% wrt no mi-
gration, reducing migra-
tion cost by 40% wrt to
always migrate

-

[113] VM mi-
gration

1) Minimize system sum
cost over a given time

Formulation of an optimal
threshold decision policy us-
ing MDP

1D asymmetric
random walk
mobility model

Simulations Always minimize over-
all cost wrt always/never
migrate

O(|M |N)

[114] VM mi-
gration

1) Minimize system sum
cost over a given time

Formulation of an optimal
sequential decision policy
using MDP

2D mobility,
real mobility
traces

Simulations 30% reduction of
average cost wrt to
never/always migrate

O(N2)

[115] VM mi-
gration

1) Minimize execution
delay

Estimation of throughput of-
fered by MEC servers based
on mobility prediction

Cars moving
by a predefined
paths

Simulations Reducing latency by
35% wrt [111]

-

[116] VM mi-
gration

1) Minimize system sum
cost over a given time

Offline algorithm for find-
ing optimal placement se-
quence for a specific look-
ahead window size

Real world user
mobility traces

Simulations 25%(32%) red. of
average cost wrt to
never(always) migrate

O(M2T )

[117] VM mi-
gration

1) Minimize system sum
cost over a given time

Offline and online algorithms
for finding optimal place-
ment sequence for a specific
look-ahead window size

Real world user
mobility traces

Analytical,
simulations

32%(50%) red. of
average cost wrt to
never(always) migrate

O(MK2T )

[118] VM mi-
gration

1) Minimize overall
transmission and
reconfiguration costs

Online control algorithm
making decision where
application should be placed
and migrated

1) Random
walk, 2) Real
world user
mobility traces

Analytical
evalu-
ations,
simulations

7%(26%) red. of re-
configuration cost wrt to
never(always) migrate

O(M !/(M−
K)!) for
M ≥ K

[119] VM mi-
gration

1) Minimize VM migra-
tion time

Adaptation of compression
rate during VM migration
depending on available band-
width and processing load

- Experiments
on real
system

N/A -

[120] VM mi-
gration

1) Maximize throughput Protocol architecture for
cloud access optimization
exploiting LISP

Real world user
mobility traces

Experiments
on testbed,
simulations

Increase of throughput
up to 40%

-

[122] Path se-
lection

1) Minimize transmis-
sion delay

Path selection exploiting
handover mechanism

Manhattan mo-
bility model

Simulations Reduction of transmis-
sion delay by up to 9%

O(mn)

[123] Path se-
lection

1) Minimize transmis-
sion delay

Path selection exploiting
handover mechanism

Manhattan mo-
bility model

Simulations Reduction of transmis-
sion delay by up to 54%

O(Zn)

[124] Path se-
lection +
VM mi-
gration

1) Minimize transmis-
sion delay

Cooperative service migra-
ton and path selection algo-
rithm with movement predic-
tion

Smooth random
mobility model

Simulations Reduction of transmis-
sion delay by up to 10%
wrt [123]

O(|Z||I|τ),
O(|I|τ)

shown that the proposed path selection algorithm is able to
reduce transmission delay by 54%.

The path selection algorithm contemplated in [122][123]
may not be sufficient if the UE is too far away from the
computing location since increased transmission delay may
result in QoS reduction notwithstanding. Hence, the authors
in [124] suggest a cooperation between an algorithm for

the dynamic VM migration and the path selection algorithm
proposed in [123] further enhanced by consideration of a
mobility prediction. The first algorithm decides whether the
VM migration should be initiated or not based on the mobility
prediction and the computation/communication load of the
eNB(s). The second algorithm, then, finds the most suitable
route for downloading the offloaded data with the mobility
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prediction outcomes taken into account. The complexity of the
first algorithm is O(|Z||I|τ) and the complexity of the second
algorithm equals to O(|I|τ), where Z is the number of eNBs
with sufficient channel quality and computing capacity, and τ
stands for the size of the prediction window. The proposed
algorithm is able reducing the average offloading time by
27% comparing to the situation when the VM migration is
performed after each conventional handover and by roughly
10% with respect to [123].

D. Summary of works focused on mobility management
A comparison of the studies addressing the mobility issues

for the MEC is shown in Table V. As it can be observed
from Table V, the majority of works so far focuses on the
VM migration. Basically, the related papers try to find an
optimal decision policy whether the VM migration should
be initiated or not to minimize overall system cost (up to
32% and up to 50% reduction of average cost is achieved
compared to never and always migrate options, respectively
[117]). Moreover, some papers aim to find a proper trade-off
between VM migration cost and VM migration gain [112],
minimizing execution delay [115], minimizing VM migration
time [119], or maximizing overall throughput [120].

From Table V can be further observed that all papers dealing
with the VM migration assume the computation is done by a
single computing node. Although this option is less complex,
the parallel computation by more nodes should not be entirely
neglected as most of the papers focusing on the allocation of
computing resources assume multiple computing nodes (see
Section VI-B).

VIII. LESSONS LEARNED

This section summarizes lessons learned from the state of
the art focusing on computation offloading into the MEC. We
again address all three key items: decision on computation
offloading, allocation of computing resources, and mobility
management.

From the surveyed papers dealing with the decision on com-
putation offloading, following key observations are derived:
• If the channel quality between the UE and its serving

station is low, it is profitable to compute rather locally
[95]. The main reason is that the energy spent by the trans-
mission/reception of the offloaded data is too expensive
in terms of the energy consumption at the UE. Contrary,
with increasing quality of the channel, it is better to
delegate the computation to the MEC since the energy
cost required for transmission/reception of the offloaded
data is reduced and it is easily outweighed by the energy
saving due to the remote computation. Consequently, the
computation can be offloaded more frequently if MIMO
is exploited as it improves channel quality. Moreover, it
is efficient to exploit connection through SCeNBs for
the offloading as the SCeNBs are supposed to serve fewer
users in proximity providing high channel quality and more
available radio resources.

• The most suitable applications for offloading are those
requiring high computational power (i.e., high compu-
tational demanding applications) and, at the same time,

sending only small amount of data [82]. The reason is that
the energy spent by transmission/reception of the offloaded
computing is small while the energy savings achieved by
the computation offloading are significant. Contrary, the
applications that need to offload a lot of data should
be computed locally as the offloading simply does not pay
off due to huge amount of energy spent by the offloading
and high offloading delays.

• If the computing capacities at the MEC are fairly
limited, the probability to offload data for processing
is lowered. This is due to the fact that the probabilities of
the offloading and local processing are closely related to
the computation power available at the MEC.

• With more UEs in the system, the application offloading
as well as its processing at the MEC last longer [96].
Consequently, if there is high amount of UEs in the system,
the local processing may be more profitable, especially if
the minimization of execution delay is the priority (such is
the case of real-time applications).

• The energy savings achieved by the computation offload-
ing is strongly related to the radio access technology
used at radio link. To be more specific, OFDMA enables
significantly higher energy savings of the UEs than TDMA
due to higher granularity of radio resources [92].

• The partial offloading can save significantly more energy
at the UE when compared to the full offloading [72].
Nevertheless, in order to perform the partial offloading,
the application has to enable parallelization/partitioning.
Hence, the energy savings accomplished by computation
offloading is also strongly related to the application type
and the way how the code of the application is written.

From the surveyed papers focused on allocation of comput-
ing resources, the following key facts are learned:

• The allocation of computation resources is strongly
related to the type of the application being offloaded
in a sense that only applications allowing paralleliza-
tion/partitioning may be distributed to multiple computing
nodes. Obviously, a proper parallelization and code
partitioning of the offloaded application can result in
shorter execution delays as multiple nodes may pool their
computing resources (up to 90% reduction of execution
delay when compared to single computing node). On the
other hand, the allocation of computation resources for
parallelized applications is significantly more complex.

• An increase in the number of computing nodes does
not have to result always in a reduction in the execu-
tion delay [102]. On the contrary, if the communication
delay becomes predominant over the computation delay,
the overall execution delay may be even increased. Hence,
a proper trade-off between the number of computing nodes
and execution delay needs to be carefully considered when
allocating computing resources to offloaded data.

• If the backhaul is of a low quality, it is mostly preferred
to perform the computation locally by the serving
node (e.g., SCeNB/eNB) since the distribution of data for
computing is too costly in terms of the transmission latency.
Contrary, a high quality backhaul is a prerequisite for
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an efficient offloading to multiple computing nodes.
• The execution delay of the offloaded application de-

pends not only on the backhaul quality, but also on a
backhaul topology (e.g., mesh, ring, tree, etc.) [102]. The
mesh topology is the most advantageous in terms of the
execution delay since all computing nodes are connected
directly and distribution of the offloaded data for computing
is more convenient. On the other hand, mesh topology
would require huge investment in the backhaul.

Finally, after surveying the papers addressing mobility is-
sues in the MEC, we list following key findings:

• There are several options of the UE’s mobility management
if the data/application is offloaded to the MEC. In cases of
the low mobility, the power control at the SCeNBs/eNBs
side can be sufficient to handle mobility (up to 98% of
offloaded applications can be successfully delivered back
to the UE [109]). This is true as long as the adaption of
transmission power enables keeping the UE at the same
serving station during the computation offloading. However,
if the UE performs handover, the power control alone is not
sufficient and the VM migration or new communication
path selection may be necessary to comply with require-
ments of offloaded applications in terms of latency.

• A decision on VM migration depends strongly on three
metrics:
1) The VM migration cost (CostM ) representing the time

required for the service migration and the backhaul
resources spent by the transmission of VM(s) between
the computing nodes.

2) The VM migration gain (GainM ) is the gain consti-
tuting delay reduction (data are computed in proximity
of the UE) and saving of the backhaul resources (data
does not have to be sent through several nodes).

3) The computing load of the node(s) to which the VM is
reallocated since, in some situations, the optimal com-
puting node for the VM migration may be unavailable
due to its high computation load.

• The VM migration is impractical if huge amount of data
needs to be transmitted between the computing nodes
and/or if the backhaul resources between VMs are inad-
equate since it may take minutes or even hours to migrate
whole VM. This is obviously too long for real-time services
and it also implies significant load on backhaul, especially
if the VM migration would need to be performed frequently.
Note that time consuming migration goes against the major
benefit of the MEC, i.e., low latency resulting in suitability
of the offloading for real-time services.

• The minimization of the VM migration time can be
done by reduction of the amount of migrated data [119].
Nonetheless, even this option is not enough for real-time
services. Thus, various path selection algorithms should
be employed with purpose to find the optimal path for
delivery of the offloaded data back to the UEs while
computing is done by the same node(s) (i.e., without VM
migration) [123]. However, if the UE moves too far away
from the computation placement, more robust mobility
management based on joint VM migration and path

selection should be adopted [124].

IX. OPEN RESEARCH CHALLENGES AND FUTURE WORK

As shown in the previous sections, the MEC has attracted a
lot of attention in recent years due to its ability to significantly
reduce energy consumption of the UEs while, at the same time,
enabling real-time application offloading because of proximity
of computing resources to the users. Despite this fact the
MEC is still rather immature technology and there are many
challenges that need to be addressed before its implementation
into mobile network to be beneficial. This section discusses
several open research challenges not addressed by the current
researcher.

A. Distribution and management of MEC resources

In Section III, we have discussed several possible options for
placement of the computing nodes enabling the MEC within
the mobile network architecture. To guarantee ubiquitous
MEC services for all users wanting to utilize the MEC, the
MEC servers and the computation/storage resource should
be distributed throughout whole network. Consequently, the
individual options where to physically place the MEC servers
should complement each other in a hierarchical way. This
will allow efficient usage of the computing resources while
respecting QoS and QoE requirements of the users. In this
context, an important challenge is to find an optimal way
where to physically place the computation depending on
expected users demands while, at the same time, consider
related CAPEX and OPEX (as initially tackled in [67][68]).

Another missing topic in the literature is a design of
efficient control procedures for proper management of the
MEC resources. This includes design of signalling messages,
their exchange and optimization in terms of signalling over-
head. The control messages should be able to deliver status
information, such as load of individual computing nodes
and quality of wireless/backhaul links in order to efficiently
orchestrate computing resources within the MEC. There is a
trade-off between high signalling overhead related to frequent
exchange of the status information and an impact on the MEC
performance due to aging of the status information if these are
exchanged rarely. This trade-off have to be carefully analysed
and efficient signalling mechanisms need to be proposed to
ensure that the control entities in the MEC have up to date
information at their disposal while the cost to obtain them is
minimized.

B. Offloading decision

The offloading decision plays a crucial part as it basically
determines whether the computation would be performed
locally, remotely or jointly in both locations as discussed in
Section V. All papers focusing on the offloading decision
consider only the energy consumption at the side of the UE.
However, to be in line with future green networking, also
the energy consumption at the MEC (including computation
as well as related communication) should be further taken
into account during the decision. Moreover, all papers dealing
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with the offloading decision assume strictly static scenarios,
i.e., the UEs are not moving before and during the offload-
ing. Nevertheless, the energy necessary for transmission of
the offloaded data can be significantly changed even during
offloading if channel quality drops due to low movement or
fading. This can result in the situation when the offloading may
actually increase the energy consumption and/or execution
delay comparing to local computation. Hence, it is necessary
to propose new advanced methods for the offloading decision,
for instance, exploiting various prediction techniques on the
UEs mobility and channel quality during the offloading to
better estimate how much the offloading will cost for varying
conditions.

Besides, current papers focusing on the partial offloading
decision disregard the option to offload individual parts to
multiple computing nodes. Multiple computing nodes enables
higher flexibility and increases a probability that the offloading
to the MEC will be efficient for the UE (in terms of both
energy consumption and execution delay). Of course, a sig-
nificant challenge in this scenario belongs to consideration of
backhaul between the MEC servers and ability to reflect their
varying load and parameters during the offloading decision.

C. Allocation of computing resources

The studies addressing the problem of an efficient allocation
of the computing resources for the application offloaded to
the MEC do not consider dynamicity of the network. To be
more precise, the computing nodes (e.g., SCeNBs, eNB) are
selected in advance before the application is offloaded to the
MEC and then the same computing node(s) is (are) assumed
to process the offloaded application (at least as long as the UE
is relatively static and does not perform handover among cells
as considered in Section VII). However, if some additional
computing resources are freed while given application is
processed at the MEC, these resources could be also allocated
for it in order to farther speed up the offloaded computing.
Hence, a dynamic allocation of the computing resources during
processing of the offloaded applications in the MEC is an
interesting research challenge to be addressed in the future.

So far all the studies focusing on the allocation of computing
resources assume a ”flat” MEC architecture in a sense that
the MEC computing nodes are equally distributed and of the
same computing power. In this respect, it would be interesting
to consider more hierarchical placement of the computing
nodes within the MEC. More specifically, computing resources
should be distributed within the network as described in Sec-
tion III-B3 (e.g., cluster of SCeNBs, eNBs, aggregation points
or even at the edge of CN). A hierarchical MEC placement
should result in a better distribution of the computing load and
a lower execution delay experienced by the users since the use
of distant CC can be more easily avoided.

D. Mobility management

So far, the works focusing on mobility management and
particularly on the VM migration consider mostly a scenario
when only a single computing node (SCeNB or eNB) makes
computation for each UE. Hence, the challenge is how to

efficiently handle the VM migration procedure when appli-
cation is offloaded to several computing nodes. Moreover,
the VM migration impose high load on the backhaul and
leads to high delay, which makes it unsuitable for real-
time applications. Hence, new advanced techniques enabling
very fast VM migration in order of milliseconds should be
developed. However, this alternative is very challenging due
to communication limits between computing nodes. Therefore,
more realistic challenge is how to pre-migrate the computation
in advance (e.g., based on some prediction techniques) so that
there would be no service disruption observed by the users.

Despite of above-mentioned suggestions potentially reduc-
ing VM migration time, stand-alone VM migration may be
unsuitable for real-time applications notwithstanding. Conse-
quently, it is important to aim majority of research effort
towards a cooperation of the individual techniques for mobility
management. In this regard, dynamic optimization and joint
consideration of all techniques (such as power control, VM
migration, compression of migrated data, and/or path selec-
tion) should be studied more closely in order to enhance QoE
for the UEs and to optimize overall system performance for
moving users.

E. Traffic paradigm imposed by coexistence of offloaded data
and conventional data

Current research dealing with the decision on computation
offloading, allocation of computing resources and mobility
management mostly neglects the fact that conventional data
not offloaded to the MEC, such as VoIP, HTTP, FTP, machine
type communication, video streaming, etc., has to be transmit-
ted over radio and backhaul links in parallel to the offloaded
data. Hence, whenever any application is being offloaded to
the MEC, it is necessary to jointly allocate/schedule commu-
nication resources both for the offloaded data to the MEC
and the conventional data (i.e., data not exploiting MEC) in
order to guarantee QoS and QoE. Especially, if we consider
the fact that the offloaded data represents additional load
on already resource starving mobile cellular networks. The
efficient scheduling of the communication resources may also
increase the amount of data offloaded to the MEC because of
more efficient utilization radio and backhaul communication
links.

Besides, the offloading reshapes conventional perception of
uplink/downlink utilization as the offloading is often more
demanding in terms of the uplink transmission (offloading
from the UE to the MEC). The reason for this is that many ap-
plications require delivering of large files/data to the MEC for
processing (e.g., image/video/voice recognition, file scanning,
etc.) while the results delivered to the UE are of significantly
lower volume. This paradigm motivates for rethinking and
reshaping research effort from sole downlink to the mixed
downlink and uplink in the future.

F. Concept validation

As shown in Section V, VI, and VII, the MEC concept
is analyzed and novel algorithms and proposed solutions are
validated typically by numerical analysis or by simulations. In
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addition, majority of work assume rather simple, and some-
times unrealistic, scenarios for simplification of the problem.
Although these are a good starting point in uncovering MEC
potentials, it is important to validate key principles and find-
ings by means of simulations under more complex and realistic
situations and scenarios such as, e.g., in [114]-[118] where
at least real world user mobility traces are considered for
evaluation and proposals on VM migration. At the same time,
massive trials and further experiments in emulated networks
(like initially provided in [42]) or real networks (similar to
those just recently performed by Nokia [46]) are mandatory
to move the MEC concept closer to the reality.

X. CONCLUSION

The MEC concept brings computation resources close to
the UEs, i.e., to the edge of mobile network. This enables
to offload highly demanding computations to the MEC in
order to cope with stringent requirements of applications on
latency (e.g., real time applications) and to reduce energy
consumption at the UE. Although the research on the MEC
gains its momentum, as reflected in this survey after all, the
MEC itself is still immature and highly unproved technology.
In this regard, the MEC paradigm introduces several critical
challenges waiting to be addressed to the full satisfaction of all
involved parties such as mobile operators, service providers,
and users. The alpha and the omega of current research
regarding the MEC is how to guarantee service continuity in
highly dynamic scenarios. This part is lacking in terms of
research and is one of the blocking point to enroll the MEC
concept. Moreover, recent research validates solution mostly
under very simplistic scenarios and by means of simulations
or analytical evaluations. Nevertheless, to demonstrate the
expected values introduced by the MEC, real tests and trials
under more realistic assumptions are further required.
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